1 |
YANG F, FENG L, LIU Q, et al. Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition[J]. Environmental and Experimental Botany, 2018, 150: 79-87.
|
2 |
崔瑾, 徐志刚, 邸秀茹. LED在植物设施栽培中的应用和前景[J]. 农业工程学报, 2008(8): 249-253.
|
|
CUI J, XU Z, DI X. Application and prospect of LED in plant facility cultivation[J]. Transactions of the CSAE, 2008(8): 249-253.
|
3 |
ZHANG P, ZHANG Z, LI B, et al. Photosynthetic rate prediction model of newborn leaves verified by core fluorescence parameters[J]. Scientific Reports, 2020, 10(1): 3013-3024.
|
4 |
CASTELLANO S, SANTAMARIA P, SERIO F. Photosynthetic photon flux density distribution inside photovoltaic greenhouses, numerical simulation, and experimental results[J]. Applied Engineering in Agriculture, 2016, 32(6): 861-869.
|
5 |
COSSU M, COSSU A, DELIGIOS P, et al. Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 822-834.
|
6 |
LANDI M, ZIVCAK M, SYTAR O, et al. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review[J]. Biochimica Et Biophysica Acta-Bioenergetics, 2020, 1861(2) : 148131-148155.
|
7 |
于海业, 孔丽娟, 刘爽, 等. 植物生产的光环境因子调控应用综述[J]. 农机化研究, 2018, 40(8): 1-9.
|
|
YU H, KONG L, LIU S, et al. Review on the application of light environmental factor regulation in plant production[J]. Agricultural Mechanization Research, 2018, 40(8): 1-9
|
8 |
HU J, XIN P, ZHANG S, et al. Model for tomato photosynthetic rate based on neural network with genetic algorithm[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(1): 179-185.
|
9 |
SHAMSHIRI R, KALANTAR F, TING K, et al. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(1): 1-22.
|
10 |
CAO K, CUI L, YE L, et al. Effects of red light night break treatment on growth and flowering of tomato plants[J]. Frontiers in Plant Science, 2016, 7(1): 527-535.
|
11 |
PINHO P, HYTONEN T, RANTANEN M, et al. Dynamic control of supplemental lighting intensity in a greenhouse environment[J]. Lighting Research & Technology, 2013, 45(3): 295-304.
|
12 |
刘晓英, 徐志刚, 焦学磊, 等. 可调LED光源系统设计及其对菠菜生长的影响[J]. 农业工程学报, 2012, 28(1): 208-212.
|
|
LIU X, XU Z, JIAO X, et al. Design of adjustable LED light source system and its effect on spinach growth [J] Transactions of the CSAE, 2012, 28 (1): 208-212.
|
13 |
胡瑾, 樊宏攀, 张海辉, 等. 基于无线传感器网络的温室光环境调控系统设计[J]. 农业工程学报, 2014, 30(4): 160-167.
|
|
HU J, FAN H, ZHANG H, et al. Design of greenhouse light environment control system based on wireless sensor network[J]. Transactions of the CSAE, 2014, 30(4): 160-167.
|
14 |
张晓涵, 尹长川, 吴华瑞. 面向大规模农田生境监测的无线传感器网络节能优化策略[J]. 智慧农业, 2019, 1(2): 55-63.
|
|
ZHANG X, YIN C, WU H. Energy optimization strategy for wireless sensor networks for large-scale farmland habitat monitoring[J]. Smart Agriculture, 2019, 1(2): 55-63.
|
15 |
苏战战, 李莉, 李文军, 等. 基于RF-GSO的温室番茄自适应调光系统设计与试验[J]. 农业机械学报, 2019, 50(S1): 339-346.
|
|
SU Z, LI L, LI W, et al. Design and experiment of an adaptive dimming system for greenhouse tomatoes based on RF-GSO[J]. Transactions of the CSAM, 2019, 50(S1): 339-346.
|
16 |
TANG L, YIN D, CHEN C, et al. Optimal design of plant canopy based on light interception: A case study with loquat[J]. Frontiers in Plant Science, 2019, 10: 364-375.
|
17 |
VISSER P, BUCK H, VAN W. Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer[J]. Frontiers in Plant Science, 2014, 5: 48-55.
|
18 |
赵静, 周增产, 卜云龙, 等. 植物工厂自动立体栽培系统研发[J]. 农业工程, 2018, 8(1): 18-21.
|
|
ZHAO J, ZHOU Z, BU Y, et al. Research and development of auto stereo cultivation system in plant factory[J]. Agricultural Engineering, 2018, 8(1): 18-21.
|
19 |
KARIM W, SEIDI A, HILL R, et al. Novel characteristics of photodamage to psii in a high-light-sensitive Symbiodinium phylotype[J]. Plant and Cell Physiology, 2015, 56(6): 1162-1171.
|
20 |
FAN H, GUAN L, LI T, et al. Hydrogen sulphide alleviates oxidative damage and enhances light energy transformation under high light for Dendrobium officinale[J]. Scientia Horticulturae, 2014, 177: 47-52.
|
21 |
XIE S, LUO X. Effect of leaf position and age on anatomical structure, photosynthesis, stomatal conductance and transpiration of Asian pear[J]. Botanical Bulletin of Academia Sinica, 2003, 44(4): 297-303.
|
22 |
艾希珍, 张振贤, 何启伟, 等. 日光温室黄瓜不同叶位叶片光合作用研究[J]. 中国农业科学, 2002, 35(12): 1519-1524.
|
|
AI X, ZHANG Z, HE Q, et al. Study on photosynthesis of cucumber leaves in different positions in sunlight greenhouse[J]. Scientia Agricultura Sinica,2002, 35(12): 1519-1524.
|
23 |
姜英, 林叶春, 许和水, 等. 两种C_4作物不同叶位光合及叶绿素荧光特性比较[J]. 中国农业大学学报, 2012, 17(3): 34-42.
|
|
JIANG Y, LIN Y, XU H, et al. Comparison of photosynthesis and chlorophyll fluorescence characteristics of two C_4 crops at different leaf positions[J]. Journal of China Agricultural University, 2012,17 (3): 34-42.
|
24 |
WILSON D, COOPER J. Apparent photosynthesis and leaf characters in relation to leaf position and age, among contrasting Lolium genotypes[J]. New Phytologist, 1969, 68(3): 645-655.
|
25 |
张海辉, 张盼, 胡瑾, 等. 融合叶位光合差异的设施黄瓜立体光环境优化调控模型[J]. 农业机械学报, 2019, 50(2): 266-272.
|
|
ZHANG H, ZHANG P, HU J, et al. Optimal regulation model of cucumber stereoscopic light environment based on photosynthetic difference of leaf position [J]. Transactions of the CSAM, 2019, 50(2): 266-272.
|
26 |
MIAO Y, WANG X, GAO L, et al. Blue light is more essential than red light for maintaining the activities of photosystem ii and i and photosynthetic electron transport capacity in cucumber leaves[J]. Journal of Integrative Agriculture, 2016, 15(1): 87-100.
|
27 |
LIU X, JIAO X, CHANG T, et al. Photosynthesis and leaf development of cherry tomato seedlings under different led-based blue and red photon flux ratios[J]. Photosynthetica, 2018, 56(4): 1212-1217.
|
28 |
MIAO Y, CHEN Q, QU M, et al. Blue light alleviates 'red light syndrome' by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber plants[J]. Scientia Horticulturae, 2019, 257: 750-759.
|