Smart Agriculture ›› 2022, Vol. 4 ›› Issue (3): 132-142.doi: 10.12133/j.smartag.SA202206012
• Special Issue--Key Technologies and Equipment for Smart Orchard • Previous Articles
LI Yang1,2(), PENG Yankun1,2(
), LYU Decai1,2, LI Yongyu1,2, LIU Le1,2, ZHU Yujie1,2
Received:
2022-06-28
Online:
2022-09-30
Published:
2022-11-23
corresponding author:
PENG Yankun
E-mail:158782989@qq.com;ypeng@cau.edu.cn
CLC Number:
LI Yang, PENG Yankun, LYU Decai, LI Yongyu, LIU Le, ZHU Yujie. Development of Mobile Orchard Local Grading System of Apple Internal Quality[J]. Smart Agriculture, 2022, 4(3): 132-142.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.SA202206012
1 | ZHANG Q, ZHOU B, LI M, et al. Multivariate analysis between meteorological factor and fruit quality of Fuji apple at different locations in China[J]. Journal of Integrative Agriculture, 2018, 17(6): 1338-1347. |
2 | LI J, SUN D, CHENG J. Recent advances in nondestructive analytical techniques for determining the total soluble solids in fruits: A review[J]. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(5): 897-911. |
3 | 秦楷, 陈刚, 张剑一, 等. 苹果霉心病光谱在线检测的摆放姿态及建模方法优化研究[J]. 光谱学与光谱分析, 2021, 41(11): 3405-3410. |
QIN K, CHEN G, ZHANG J, et al. Optimization of fruit pose and modeling method for online spectral detection of apple moldy core[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3405-3410. | |
4 | 李东博, 黄铝文, 赵旭博. 基于介电特征的苹果霉心病检测方法[J]. 智慧农业(中英文), 2021, 3(4): 66-76. |
LI D, HUANG L, ZHAO X. Detection method of apple mould core based on dielectric characteristics[J]. Smart Agriculture, 2021, 3(4): 66-76. | |
5 | 曹玉栋, 祁伟彦, 李娴, 等. 苹果无损检测和品质分级技术研究进展及展望[J]. 智慧农业, 2019, 1(3): 29-45. |
CAO Y, QI W, LI X, et al. Research progress and prospect on non-destructive detectionand quality grading technology of apple[J]. Smart Agriculture, 2019, 1(3): 29-45. | |
6 | GUO Z, WANG M, AGYEKUM A, et al. Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy[J]. Journal of Food Engineering, 2020, 279: ID 109955. |
7 | CORTES V, BLASCO J, ALEIXOS N, et al. Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review[J]. Trends in Food Science & Technology, 2019, 85: 138-148. |
8 | IBANEZ G, CEBOLLA-CORNEJO J, MARTI R, et al. Non-destructive determination of taste-related compounds in tomato using NIR spectra[J]. Journal of Food Engineering, 2019, 263: 237-242. |
9 | 刘燕德, 胡宣, 朱明旺, 等.近红外在线检测装置参数对苹果糖度模型适用性的影响[J]. 华南农业大学学报, 2022, 43(5): 108-114. |
LIU Y, HU X, ZHU M, et al. Influence of NIR online inspection device parameters on the applicability of apple brix model[J]. Journal of South China Agricultural University, 2022, 43(5): 108-114. | |
10 | 郭志明, 黄文倩, 陈全胜, 等. 苹果腐心病的透射光谱在线检测系统设计及试验[J]. 农业工程学报, 2016, 32(6): 283-288. |
GUO Z, HUANG W, CHEN Q, et al. Design and test of on-line detection system for apple core rot disease based on transmitted spectrum[J]. Transactions of the CSAE, 2016, 32(6): 283-288. | |
11 | 王世芳, 崔广禄, 冯晓元, 等. 近红外光谱分析技术在苹果品质检测中的应用进展[J]. 食品安全质量检测学报, 2017, 8(12): 4602-4608. |
WANG S, CUI G, FENG X, et al. Application progress of near infrared spectroscopy analysis technology for apple quality detection[J]. Journal of Food Safety and Quality, 2017, 8(12): 4602-4608. | |
12 | 李龙, 彭彦昆, 李永玉. 苹果内外品质在线无损检测分级系统设计与试验[J]. 农业工程学报, 2018, 34(9): 267-275. |
LI L, PENG Y, LI Y, et al. Design and experiment on grading system for online non-destructive detection of internal and external quality of apple[J]. Transactions of the CSAE, 2018, 34(9): 267-275. | |
13 | MIZUSHIMA A, LU R. Cost benefits analysis of in-field presorting for the apple industry[J]. Applied Engineering in Agriculture, 2011, 27(1): 33-40. |
14 | ZHANG Z, POTHULA A, LU R. A review of bin filling technologies for apple harvest and postharvest handling[J]. Applied Engineering in Agriculture, 2018, 34(4): 687-703. |
15 | TIAN S, XU H. Nondestructive methods for the quality assessment of fruits and vegetables considering their physical and biological variability[J]. Food Engineering Reviews, 2022, 14: 380-407. |
16 | XIA Y, FAN S, LI J, et al. Optimization and comparison of models for prediction of soluble solids content in apple by online Vis/NIR transmission coupled with diameter correction method[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 201: ID 104017. |
17 | DING C, SHI S, CHEN J, et al. Influence of surface curvature on light-based nondestructive measurement of stone fruit[J]. Computers and Electronics in Agriculture, 2016, 121: 200-206. |
18 | GOWEN A, O'DONNELL C, TAGHIZADEH M, et al. Hyperspectral imaging combined with principal component analysis for bruise damage detection on white mushrooms (Agaricus bisporus)[J]. Journal of Chemometrics, 2008, 22(3-4): 259-267. |
19 | XIA Y, HUANG W, FAN S, et al. Effect of spectral measurement orientation on online prediction of soluble solids content of apple using Vis/NIR diffuse reflectance[J]. Infrared Physics & Technology, 2019, 97: 467-477. |
20 | LI L, PENG Y, LI Y, et al. Rapid and low-cost detection of moldy apple core based on an optical sensor system[J]. Postharvest Biology and Technology, 2020, 168: ID 111276. |
21 | ZHANG J, LIU S, YANG J, et al. Quantitative spectroscopic analysis of heterogeneous systems: Chemometric methods for the correction of multiplicative light scattering effects[J]. Reviews in Analytical Chemistry, 2013, 32(2): 113-125. |
22 | TIAN S, ZHANG J, ZHANG Z, et al. Effective modification through transmission Vis/NIR spectra affected by fruit size to improve the prediction of moldy apple core[J]. Infrared Physics & Technology, 2019, 100: 117-124. |
23 | CHENG J, SUN D. Partial least squares regression (PLSR) applied to NIR and HSI spectral data modeling to predict chemical properties of fish muscle[J]. Food Engineering Reviews, 2017, 9(1): 36-49. |
24 | 王亚丽, 彭彦昆, 赵鑫龙, 等. 玉米种子活力逐粒无损检测与分级装置研究[J]. 农业机械学报, 2020, 51(2): 350-356. |
WANG Y, PENG Y, ZHAO X, et al. Design and experiment of non-destructive testing and grading device for corn seed vigor[J]. Transactions of the CSAM, 2020, 51(2): 350-356. | |
25 | POREP J, KAMMERER D, CARLE R. On-line application of near infrared (NIR) spectroscopy in food production[J]. Trends in Food Science & Technology, 2015, 46(2): 211-230. |
26 | 乔鑫, 彭彦昆, 王亚丽, 等. 手机联用的苹果糖度便携式检测装置设计与试验[J]. 农业机械学报, 2020, 51(S2): 491-498. |
QIAO X, PENG Y, WANG Y, et al. Design of portable device for testing sugar content of apples combined with mobile phones[J]. Transactions of the CSAM, 2020, 51(S2): 491-498. | |
27 | XIA Y, FAN S, TIAN X, et al. Multi-factor fusion models for soluble solid content detection in pear (Pyrus bretschneideri 'Ya') using Vis/NIR online half-transmittance technique[J]. Infrared Physics & Technology, 2020, 110: ID 103443. |
28 | 雷雨, 何东健, 周兆永, 等. 苹果霉心病可见/近红外透射能量光谱识别方法[J]. 农业机械学报, 2016, 47(4): 193-200. |
LEI Y, HE D, ZHOU Z, et al. Detection of moldy core of apples based on visible/near infrared transmission energy spectroscopy[J]. Transactions of the CSAM, 2016, 47(4): 193-200. | |
29 | LI L, PENG Y, LI Y, et al. A new scattering correction method of different spectroscopic analysis for assessing complex mixtures[J]. Analytica Chimica Acta, 2019, 1087: 20-28. |
30 | RINNAN A, VANDENBERG F, ENGELSEN S. Review of the most common pre-processing techniques for near-infrared spectra[J]. TrAC Trends in Analytical Chemistry, 2009, 28(10): 1201-1222. |
31 | 张海辉, 田世杰, 马敏娟, 等. 考虑直径影响的苹果霉心病透射光谱修正及检测[J]. 农业机械学报, 2019, 50(1): 313-320. |
ZHANG H, TIAN S, MA M, et al. Detection method of moldy core in apples using modified transmission spectrum based on size of fruit[J]. Transactions of the CSAM, 2019, 50(1): 313-320. |
[1] | LI Dongbo, HUANG Lyuwen, ZHAO Xubo. Detection Method of Apple Mould Core Based on Dielectric Characteristics [J]. Smart Agriculture, 2021, 3(4): 66-76. |
[2] | LI Zhijun, YANG Shenghui, SHI Deshuai, LIU Xingxing, ZHENG Yongjun. Yield Estimation Method of Apple Tree Based on Improved Lightweight YOLOv5 [J]. Smart Agriculture, 2021, 3(2): 100-114. |
[3] | Zhou Chengquan, Ye Hongbao, Yu Guohong, Hu Jun, Xu Zhifu. A fast extraction method of broccoli phenotype based on machine vision and deep learning [J]. Smart Agriculture, 2020, 2(1): 121-132. |
[4] | Xia Xue, Sun Qixin, Shi Xiao, Chai Xiujuan. Apple detection model based on lightweight anchor-free deep convolutional neural network [J]. Smart Agriculture, 2020, 2(1): 99-110. |
[5] | Cao Yudong, Qi Weiyan, Li Xian, Li Zhemin. Research progress and prospect on non-destructive detection and quality grading technology of apple [J]. Smart Agriculture, 2019, 1(3): 29-45. |
[6] | Jiang Mei, Sun Sashuang, He Dongjian, Song Huaibo. Recognition and localization method of occluded apples based on K-means clustering segmentation algorithm and convex hull theory [J]. Smart Agriculture, 2019, 1(2): 45-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||