Welcome to Smart Agriculture

Top Read Articles

    Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Research Progress of Deep Learning in Detection and Recognition of Plant Leaf Diseases
    SHAO Mingyue, ZHANG Jianhua, FENG Quan, CHAI Xiujuan, ZHANG Ning, ZHANG Wenrong
    Smart Agriculture    2022, 4 (1): 29-46.   DOI: 10.12133/j.smartag.SA202202005
    Abstract3032)   HTML515)    PDF(pc) (1061KB)(2944)       Save

    Accurate detection and recognition of plant diseases is the key technology to early diagnosis and intelligent monitoring of plant diseases, and is the core of accurate control and information management of plant diseases and insect pests. Deep learning can overcome the disadvantages of traditional diagnosis methods and greatly improve the accuracy of diseases detection and recognition, and has attracted a lot of attention of researchers. This paper collected the main public plant diseases image data sets all over the world, and briefly introduced the basic information of each data set and their websites, which is convenient to download and use. And then, the application of deep learning in plant disease detection and recognition in recent years was systematically reviewed. Plant disease target detection is the premise of accurate classification and recognition of plant disease and evaluation of disease hazard level. It is also the key to accurately locate plant disease area and guide spray device of plant protection equipment to spray drug on target. Plant disease recognition refers to the processing, analysis and understanding of disease images to identify different kinds of disease objects, which is the main basis for the timely and effective prevention and control of plant diseases. The research progress in early disease detection and recognition algorithm was expounded based on depth of learning research, as well as the advantages and existing problems of various algorithms were described. It can be seen from this review that the detection and recognition algorithm based on deep learning is superior to the traditional detection and recognition algorithm in all aspects. Based on the investigation of research results, it was pointed out that the illumination, sheltering, complex background, different disorders with similar symptoms, different changes of disease symptoms in different periods, and overlapping coexistence of multiple diseases were the main challenges for the detection and recognition of plant diseases. At the same time, the establishment of a large-scale and more complex data set that meets the specific research needs is also a difficulty that need to face together. And at further, we point out that the combination of the better performance of the neural network, large-scale data set and agriculture theoretical basis is a major trend of the development of the future. It is also pointed out that multimodal data can be used to identify early plant diseases, which is also one of the future development direction.

    Reference | Related Articles | Metrics | Comments0
    Methods and New Research Progress of Remote Sensing Monitoring of Crop Disease and Pest Stress Using Unmanned Aerial Vehicle
    YANG Guofeng, HE Yong, FENG Xuping, LI Xiyao, ZHANG Jinnuo, YU Zeyu
    Smart Agriculture    2022, 4 (1): 1-16.   DOI: 10.12133/j.smartag.SA202201008
    Abstract2692)   HTML722)    PDF(pc) (937KB)(2170)       Save

    Diseases and pests are main stresses to crop production. It is necessary to accurately and quickly monitor and control the stresses dynamically, so as to ensure the food security and the quality and safety of agricultural products, protect the ecological environment, and promote the sustainable development of agriculture. In recent years, with the rapid development of the unmanned aerial vehicle (UAV) industry, UAV agricultural remote sensing has played an important role in the application of crop diseases and pests monitoring due to its high image spatial resolution, strong data acquisition timeliness and low cost. The relevant background of UAV remote sensing monitoring of crop disease and pest stress was introduced, then the current methods commonly used in remote sensing monitoring of crop disease and pest stress by UAV was summarized. The data acquisition method and data processing method of UAV remote sensing monitoring of crop disease and pest stress were mainly discussed. Then, from the six aspects of visible light imaging remote sensing, multispectral imaging remote sensing, hyperspectral imaging remote sensing, thermal infrared imaging remote sensing, LiDAR imaging remote sensing and multiple remote sensing fusion and comparison, the research progress of remote sensing monitoring of crop diseases and pests by UAV worldwide was reviewed. Finally, the unresolved key technical problems and future development directions in the research and application of UAV remote sensing monitoring of crop disease and pest stress were proposed. Such as, the performance of the UAV flight platform needs to be optimized and upgraded, as well as the development of low-cost, lightweight, modular, and more adaptable airborne sensors. Convenient and automated remote sensing monitoring tasks need to be designed and implemented, and more remote sensing monitoring information can be obtained. Data processing algorithms or software should be designed and developed with greater applicability and wider applicability, and data processing time should be shortened by using 5G-based communication networks and edge computing devices. The applicability of the algorithm or model for UAV remote sensing monitoring of crop disease and pest stress needs to be stronger, so as to build a corresponding method library. We hope that this paper can help Chinese UAV remote sensing monitoring of crop diseases and pests to achieve more standardization, informatization, precision and intelligence.

    Reference | Related Articles | Metrics | Comments0
    State-of-the-art and Prospect of Research on Key Technical for Unmanned Farms of Field Corp
    YIN Yanxin, MENG Zhijun, ZHAO Chunjiang, WANG Hao, WEN Changkai, CHEN Jingping, LI Liwei, DU Jingwei, WANG Pei, AN Xiaofei, SHANG Yehua, ZHANG Anqi, YAN Bingxin, WU Guangwei
    Smart Agriculture    2022, 4 (4): 1-25.   DOI: 10.12133/j.smartag.SA202212005
    Abstract2561)   HTML633)    PDF(pc) (2582KB)(3485)       Save

    As one of the important way for constructing smart agriculture, unmanned farms are the most attractive in nowadays, and have been explored in many countries. Generally, data, knowledge and intelligent equipment are the core elements of unmanned farms. It deeply integrates modern information technologies such as the Internet of Things, big data, cloud computing, edge computing, and artificial intelligence with agriculture to realize agricultural production information perception, quantitative decision-making, intelligent control, precise input and personalized services. In the paper, the overall technical architecture of unmanned farms is introduced, and five kinds of key technologies of unmanned farms are proposed, which include information perception and intelligent decision-making technology, precision control technology and key equipment for agriculture, automatic driving technology in agriculture, unmanned operation agricultural equipment, management and remote controlling system for unmanned farms. Furthermore, the latest research progress of the above technologies both worldwide are analyzed. Based on which, critical scientific and technological issues to be solved for developing unmanned farms in China are proposed, include unstructured environment perception of farmland, automatic drive for agriculture machinery in complex and changeable farmland environment, autonomous task assignment and path planning of unmanned agricultural machinery, autonomous cooperative operation control of unmanned agricultural machinery group. Those technologies are challenging and absolutely, and would be the most competitive commanding height in the future. The maize unmanned farm constructed in the city of Gongzhuling, Jilin province, China, was also introduced in detail. The unmanned farms is mainly composed of information perception system, unmanned agricultural equipment, management and controlling system. The perception system obtains and provides the farmland information, maize growth, pest and disease information of the farm. The unmanned agricultural machineries could complete the whole process of the maize mechanization under unattended conditions. The management and controlling system includes the basic GIS, remote controlling subsystem, precision operation management subsystem and working display system for unmanned agricultural machineries. The application of the maize unmanned farm has improved maize production efficiency (the harvesting efficiency has been increased by 3-4 times) and reduced labors. Finally, the paper summarizes the important role of the unmanned farm technology were summarized in solving the problems such as reduction of labors, analyzes the opportunities and challenges of developing unmanned farms in China, and put forward the strategic goals and ideas of developing unmanned farm in China.

    Reference | Related Articles | Metrics | Comments0
    Identification of Tomato Leaf Diseases Based on Improved Lightweight Convolutional Neural Networks MobileNetV3
    ZHOU Qiaoli, MA Li, CAO Liying, YU Helong
    Smart Agriculture    2022, 4 (1): 47-56.   DOI: 10.12133/j.smartag.SA202202003
    Abstract1822)   HTML152)    PDF(pc) (1623KB)(1300)       Save

    Timely detection and treatment of tomato diseases can effectively improve the quality and yield of tomato. In order to realize the real-time and non-destructive detection of tomato diseases, a tomato leaf disease classification and recognition method based on improved MobileNetV3 was proposed in this study. Firstly, the lightweight convolutional neural network MobileNetV3 was used for transfer learning on the image net data set. The network was initialized according to the weight of the pre training model, so as to realize the transfer and fine adjustment of large-scale shared parameters of the model. The training method of transfer learning could effectively alleviate the problem of model over fitting caused by insufficient data, realized the accurate classification of tomato leaf diseases in a small number of samples, and saved the time cost of network training. Under the same experimental conditions, compared with the three standard deep convolution network models of VGG16, ResNet50 and Inception-V3, the results showed that the overall performance of MobileNetV3 was the best. Next, the impact of the change of loss function and the change of data amplification mode on the identification of tomato leaf diseases were observed by using MobileNetV3 convolution network. For the test of loss value, focal loss and cross entropy function were used for comparison, and for the test of data enhancement, conventional data amplification and mixup hybrid enhancement were used for comparison. After testing, using Mixup enhancement method under focal loss function could improve the recognition accuracy of the model, and the average test recognition accuracy of 10 types of tomato diseases under Mixup hybrid enhancement and focal loss function was 94.68%. On the basis of transfer learning, continue to improve the performance of MobileNetV3 model, the dilated convolution convolution with expansion rate of 2 and 4 was introduced into convolution layer, 1×1 full connection layer after deep convolution of 5×5 was connected to form a perceptron structure in convolution layer, and GLU gating mechanism activation function was used to train the best tomato disease recognition model. The average test recognition accuracy was as high as 98.25%, the data scale of the model was 43.57 MB, and the average detection time of a single tomato disease image was only 0.27s, after ten fold cross validation, the recognition accuracy of the model was 98.25%, and the test results were stable and reliable. The experiment showed that this study could significantly improve the detection efficiency of tomato diseases and reduce the time cost of disease image detection.

    Reference | Related Articles | Metrics | Comments0
    Yield Estimation Method of Apple Tree Based on Improved Lightweight YOLOv5
    LI Zhijun, YANG Shenghui, SHI Deshuai, LIU Xingxing, ZHENG Yongjun
    Smart Agriculture    2021, 3 (2): 100-114.   DOI: 10.12133/j.smartag.2021.3.2.202105-SA005
    Abstract1777)   HTML126)    PDF(pc) (3571KB)(1656)       Save

    Yield estimation of fruit tree is one of the important works in orchard management. In order to improve the accuracy of in-situ yield estimation of apple trees in orchard, a method for the yield estimation of single apple tree, which includes an improved YOLOv5 fruit detection network and a yield fitting network was proposed. The in-situ images of the apples without bags at different periods were acquired by using an unmanned aerial vehicle and Raspberry Pi camera, formed an image sample data set. For dealing with no attention preference and the parameter redundancy in feature extraction, the YOLOv5 network was improved by two approaches: 1) replacing the depth separable convolution, and 2) adding the attention mechanism module, so that the computation cost was decreased. Based on the improvement, the quantity of fruit was estimated and the total area of the bounding box of apples were respectively obtained as output. Then, these results were used as the input of the yield fitting network and actual yields were applied as the output to train the yield fitting network. The final model of fruit tree production estimation was obtained by combining the improved YOLOv5 network and the yield fitting network. Yield estimation experimental results showed that the improved YOLOv5 fruit detection algorithm could improve the recognition accuracy and the degree of lightweight. Compared with the previous algorithm, the detection speed of the algorithm proposed in this research was increased by up to 15.37%, while the mean of average accuracy (mAP) was raised up to 96.79%. The test results based on different data sets showed that the lighting conditions, coloring time and with white cloth in background had a certain impact on the accuracy of the algorithm. In addition, the yield fitting network performed better on predicting the yield of apple trees. The coefficients of determination in the training set and test set were respectively 0.7967 and 0.7982. The prediction accuracy of different yield samples was generally stable. Meanwhile, in terms of the with/without of white cloth in background, the range of relative error of the fruit tree yield measurement model was respectively within 7% and 13%. The yield estimation method of apple tree based on improved lightweight YOLOv5 had good accuracy and effectiveness, which could achieve yield estimation of apples in the natural environment, and would provide a technical reference for intelligent agricultural equipment in modern orchard environment.

    Reference | Related Articles | Metrics | Comments0
    Research Advances and Prospects of Crop 3D Reconstruction Technology
    ZHU Rongsheng, LI Shuai, SUN Yongzhe, CAO Yangyang, SUN Kai, GUO Yixin, JIANG Bofeng, WANG Xueying, LI Yang, ZHANG Zhanguo, XIN Dawei, HU Zhenbang, CHEN Qingshan
    Smart Agriculture    2021, 3 (3): 94-115.   DOI: 10.12133/j.smartag.2021.3.3.202102-SA002
    Abstract1712)   HTML249)    PDF(pc) (1950KB)(1623)       Save

    Crop 3-dimensional (3D) reconstruction is one of the most fundamental techniques in crop phenomics, and is an important tool to accurately describe the holographic structure of crop morphology. 3D reconstruction models of crops are important for high-throughput crop phenotype acquisition, crop plant characteristics evaluation, and plant structure and phenotype correlation analysis. In order to promote and popularize the 3D reconstruction technology in crop phenotype research, the basic methods and application characteristics, the current advances of research and the prospects of 3D reconstruction in crops were review in this paper. Firstly, the existing methods of crop 3D reconstruction were summarized, the basic principles of each method were reviewed, the characteristics, advantages and disadvantages of each method were analyzed, the applicability of each method on the basis of the general process of crop 3D reconstruction methods were introduced, and the specific process and considerations for the implementation of each method were summarized. Secondly, the application of crop 3D reconstruction were divided into three parts: single crop reconstruction, field group reconstruction and root system, according to different target objects, and the applications of crop 3D reconstruction technology from these three perspectives were reviewed, the research advances of each method for different crop 3D reconstruction based on accuracy, speed and cost were explored, and the problems and challenges of crop 3D reconstruction in the context of different reconstruction objects were organized. Finally, the prospects of crop 3D reconstruction technology were analyzed.

    Reference | Related Articles | Metrics | Comments0
    Progress of Agricultural Drought Monitoring and Forecasting Using Satellite Remote Sensing
    HAN Dong, WANG Pengxin, ZHANG Yue, TIAN Huiren, ZHOU Xijia
    Smart Agriculture    2021, 3 (2): 1-14.   DOI: 10.12133/j.smartag.2021.3.2.202104-SA002
    Abstract1598)   HTML230)    PDF(pc) (1255KB)(1661)       Save

    Agricultural drought is a major factor that affects agricultural production. Traditional agricultural drought monitoring is mainly based on meteorological and hydrological data, and although it can provide more accurate drought monitoring results at the point level, there are still limitations in monitoring agricultural drought at the regional scale. The rapid development of remote sensing technology has provided a new mean of monitoring agricultural droughts at the regional scale, especially since the electromagnetic wavelengths sensed by satellite sensors in orbit now cover visible, near-infrared, thermal infrared and microwave wavelengths. It is important to make full use of the rich surface information obtained from satellite remote sensing data for agricultural drought monitoring and forecasting. This paper described the research progress of agricultural drought monitoring based on satellite remote sensing from three aspects: remote sensing index-based method, soil water content method and crop water demand method. The research progress of agricultural drought monitoring based on remote sensing index-based method was elaborated from five aspects: vegetation drought index, temperature drought index, integrated vegetation and temperature drought index, water drought index and microwave drought index; the research progress of agricultural drought monitoring based on soil water content method was elaborated from two aspects: soil water content retrieval based on visible to thermal infrared data and soil water content retrieval based on microwave data; the research progress of agricultural drought monitoring based on crop water demand method was elaborated from two aspects: agricultural drought monitoring based on crop canopy water content retrieval method and crop growth model method. Agricultural drought forecasting is a timeline prediction based on drought monitoring. Based on the summary of the progress of drought monitoring, the research progress of agricultural drought forecasting by the drought index method and the crop growth model method was further briefly described. The existing agricultural drought monitoring methods based on satellite remote sensing were summarized, and its shortcomings were sorted out, and some prospects were put forward. In the future, different remote sensing data sources can be used to combine deep learning methods with crop growth models and based on data assimilation methods to further explore the potential of satellite remote sensing data in the monitoring of agricultural drought dynamics, which can further promote the development of smart agriculture.

    Reference | Related Articles | Metrics | Comments0
    Agricultural Metaverse: Key Technologies, Application Scenarios, Challenges and Prospects
    CHEN Feng, SUN Chuanheng, XING Bin, LUO Na, LIU Haishen
    Smart Agriculture    2022, 4 (4): 126-137.   DOI: 10.12133/j.smartag.SA202206006
    Abstract1529)   HTML244)    PDF(pc) (1045KB)(4079)       Save

    As an emerging concept, metaverse has attracted extensive attention from industry, academia and scientific research field. The combination of agriculture and metaverse will greatly promote the development of agricultural informatization and agricultural intelligence, provide new impetus for the transformation and upgrading of agricultural intelligence. Firstly, to expound feasibility of the application research of metaverse in agriculture, the basic principle and key technologies of agriculture metaverse were briefly described, such as blockchain, non-fungible token, 5G/6G, artificial intelligence, Internet of Things, 3D reconstruction, cloud computing, edge computing, augmented reality, virtual reality, mixed reality, brain computer interface, digital twins and parallel system. Then, the main scenarios of three agricultural applications of metaverse in the fields of virtual farm, agricultural teaching system and agricultural product traceability system were discussed. Among them, virtual farm is one of the most important applications of agricultural metaverse. Agricultural metaverse can help the growth of crops and the raising of livestock and poultry in the field of agricultural production, provide a three-dimensional and visual virtual leisure agricultural experience, provide virtual characters in the field of agricultural product promotion. The agricultural metaverse teaching system can provide virtual agricultural teaching similar to natural scenes, save training time and improve training efficiency by means of fragmentation. Traceability of agricultural products can let consumers know the production information of agricultural products and feel more confident about enterprises and products. Finally, the challenges in the development of agricultural metaverse were summarized in the aspects of difficulties in establishing agricultural metaverse system, weak communication foundation of agricultural metaverse, immature agricultural metaverse hardware equipment and uncertain agricultural meta universe operation, and the future development directions of agricultural metaverse were prospected. In the future, researches on the application of metaverse, agricultural growth mechanism, and low power wireless communication technologies are suggested to be carried out. A rural broadband network covering households can be established. The industrialization application of agricultural meta universe can be promoted. This review can provide theoretical references and technical supports for the development of metaverse in the field of agriculture.

    Reference | Related Articles | Metrics | Comments0
    Key Technologies and Equipment for Smart Orchard Construction and Prospects
    HAN Leng, HE Xiongkui, WANG Changling, LIU Yajia, SONG Jianli, QI Peng, LIU Limin, LI Tian, ZHENG Yi, LIN Guihai, ZHOU Zhan, HUANG Kang, WANG Zhong, ZHA Hainie, ZHANG Guoshan, ZHOU Guotao, MA Yong, FU Hao, NIE Hongyuan, ZENG Aijun, ZHANG Wei
    Smart Agriculture    2022, 4 (3): 1-11.   DOI: 10.12133/j.smartag.SA200201014
    Abstract1514)   HTML419)    PDF(pc) (2824KB)(1526)       Save

    Traditional orchard production is facing problems of labor shortage due to the aging, difficulties in the management of agricultural equipment and production materials, and low production efficiency which can be expected to be solved by building a smart orchard that integrates technologies of Internet of Things(IoT), big data, equipment intelligence, et al. In this study, based on the objectives of full mechanization and intelligent management, a smart orchard was built in Pinggu district, an important peaches and pears fruit producing area of Beijing. The orchard covers an aera of more than 30 hm2 in Xiying village, Yukou town. In the orchard, more than 10 kinds of information acquisition sensors for pests, diseases, water, fertilizers and medicines are applied, 28 kinds of agricultural machineries with intelligent technical support are equipped. The key technologies used include: intelligent information acquisition system, integrated water and fertilizer management system and intelligent pest management system. The intelligent operation equipment system includes: unmanned lawn mower, intelligent anti-freeze machine, trenching and fertilizer machine, automatic driving crawler, intelligent profiling variable sprayer, six-rotor branch-to-target drone, multi-functional picking platform and finishing and pruning machine, etc. At the same time, an intelligent management platform has been built in the smart orchard. The comparison results showed that, smart orchard production can reduce labor costs by more than 50%, save pesticide dosage by 30% ~ 40%, fertilizer dosage by 25% ~ 35%, irrigation water consumption by 60% ~ 70%, and comprehensive economic benefits increased by 32.5%. The popularization and application of smart orchards will further promote China's fruit production level and facilitate the development of smart agriculture in China.

    Reference | Related Articles | Metrics | Comments0
    Goals, Key Technologies, and Regional Models of Smart Farming for Field Crops in China
    LI Li, LI Minzan, LIU Gang, ZHANG Man, WANG Maohua
    Smart Agriculture    2022, 4 (4): 26-34.   DOI: 10.12133/j.smartag.SA202207003
    Abstract1400)   HTML200)    PDF(pc) (853KB)(1498)       Save

    Smart farming for field crops is a significant part of the smart agriculture. It aims at crop production, integrating modern sensing technology, new generation mobile communication technology, computer and network technology, Internet of Things(IoT), big data, cloud computing, blockchain and expert wisdom and knowledge. Deeply integrated application of biotechnology, engineering technology, information technology and management technology, it realizes accurate perception, quantitative decision-making, intelligent operation and intelligent service in the process of crop production, to significantly improve land output, resource utilization and labor productivity, comprehensively improves the quality, and promotes efficiency of agricultural products. In order to promote the sustainable development of the smart farming, through the analysis of the development process of smart agriculture, the overall objectives and key tasks of the development strategy were clarified, the key technologies in smart farming were condensed. Analysis and breakthrough of smart farming key technologies were crucial to the industrial development strategy. The main problems of the smart farming for field crops include: the lack of in-situ accurate measurement technology and special agricultural sensors, the large difference between crop model and actual production, the instantaneity, reliability, universality, and stability of the information transmission technologies, and the combination of intelligent agricultural equipment with agronomy. Based on the above analysis, five primary technologies and eighteen corresponding secondary technologies of smart farming for field crops were proposed, including: sensing technologies of environmental and biological information in field, agricultural IoT technologies and mobile internet, cloud computing and cloud service technologies in agriculture, big data analysis and decision-making technology in agriculture, and intelligent agricultural machinery and agricultural robots in fireld production. According to the characteristics of China's cropping region, the corresponding smart farming development strategies were proposed: large-scale smart production development zone in the Northeast region and Inner Mongolia region, smart urban agriculture and water-saving agriculture development zone in the region of Beijing, Tianjin, Hebei and Shandong, large-scale smart farming of cotton and smart dry farming green development comprehensive test zone in the Northwest arid region, smart farming of rice comprehensive development test zone in the Southeast coast region, and characteristic smart farming development zone in the Southwest mountain region. Finally, the suggestions were given from the perspective of infrastructure, key technology, talent and policy.

    Reference | Related Articles | Metrics | Comments0
    Research Progress of Sensing Detection and Monitoring Technology for Fruit and Vegetable Quality Control
    GUO Zhiming, WANG Junyi, SONG Ye, ZOU Xiaobo, CAI Jianrong
    Smart Agriculture    2021, 3 (4): 14-28.   DOI: 10.12133/j.smartag.2021.3.4.202106-SA011
    Abstract1349)   HTML164)    PDF(pc) (959KB)(1675)       Save

    Vegetable and fruit planting areas and products of China have always ranked first in the world, and the vegetable and fruit industry is respectively the second and third largest agricultural planting industry after grain. Vegetables and fruits are prone to quality deterioration during postharvest storage and transportation, resulting in reduced edible value and huge economic losses. To ensure fruit and vegetable quality and reduce the waste of resources caused by postnatal deterioration, this paper summarizes the latest research status of sensor detection and monitoring technology for fruit and vegetable quality deterioration and analyzed the principle, characteristics, advantages, and disadvantages of various detection technology. Among them, machine vision can detect the external quality and surface defects of fruits and vegetables, but fruits and vegetables are different from the standard machined products, and they are affected by many factors in the growth process, which seriously interfere with the image collection work and easily lead to misjudgment. An electronic nose equipped with expensive gas sensors can monitor the odor deterioration of fruits and vegetables but would require improved sensitivity and durability. Near-infrared can detect the internal quality and recessive defects of fruits and vegetables, but the applicability of the model needs to be improved. Hyperspectral imaging can visually detect the internal and external quality of fruits and vegetables and track the deterioration process, but the huge amount of data obtained leads to data redundancy, which puts forward higher requirements for system hardware. Therefore, low-cost multispectral imaging systems should be developed and characteristic wavelength extraction algorithms should be optimized. Raman spectroscopy can detect fruit and vegetable spoilage bacteria and their metabolites, but there is no effective Raman enhanced substrate production and accurate Raman standard spectrogram database. The comprehensive evaluation of fruit and vegetable deterioration can be realized by multi-technology and multi-information fusion. It can overcome the limitation of single sensor information analysis, improve the robustness and parallel processing ability of the detection model, and provide a new approach for high-precision detection or monitoring of fruit and vegetable quality deterioration. The Internet of Things monitoring system is constructed with various sensors as the sensing nodes to realize the intelligent real-time monitoring of fruit and vegetable quality deterioration information, provide a reference for solving the technical limitation of quality deterioration control in the processing of fruit and vegetable. This is of great significance for reducing the postpartum economic loss of fruits and vegetables and promoting the sustainable development of the fruit and vegetable industry.

    Reference | Related Articles | Metrics | Comments0
    Underwater Fish Species Identification Model and Real-Time Identification System
    LI Shaobo, YANG Ling, YU Huihui, CHEN Yingyi
    Smart Agriculture    2022, 4 (1): 130-139.   DOI: 10.12133/j.smartag.SA202202006
    Abstract1287)   HTML151)    PDF(pc) (1329KB)(1323)       Save

    Convolutional neural network models have different advantages and disadvantages, it is becoming more and more difficult to select an appropriate convolutional neural network model in an actual fish identification project. The identification of underwater fish is a challenge task due to varies in illumination, low contrast, high noise, low resolution and sample imbalance between each type of image from the real underwater environment. In addition, deploying models to mobile devices directly will reduce the accuracy of the model sharply. In order to solve the above problems, Fish Recognition Ground-Truth dataset was used to training model in this study, which is provided by Fish4Knowledge project from University of Edinburgh. It contains 27,370 images with 23 fish species, and has been labeled manually by marine biologists. AlexNet, GoogLeNet, ResNet and DenseNet models were selected initially according to the characteristics of real-time underwater fish identification task, then a comparative experiment was designed to explore the best network model. Random image flipping, rotation and color dithering were used to enhance data based on ground-truth fish dataset in response to the limited number of underwater fish images. Considering that there was a serious imbalance in the number of samples in each category, the label smoothing technology was used to alleviate model overfitting. The Ranger optimizer and Cosine learning rate attenuation strategy were used to further improve the training effect of the models. The accuracy and recall rate information of each model were recorded and counted. The results showed that, the accuracy and recall rate of the fish recognition model based on DenseNet reached 99.21% and 96.77% in train set and validation set respectively, its F1 value reached 0.9742, which was the best model obtained in the experiment. Finally, a remote fish identification system was designed based on Python language, in this system the model was deployed to linux server and the Android APP was responsible for uploading fish images via http to request server to identify the fishes and displaying the identification information returned by server, such as fish species, profiles, habits, distribution, etc. A set of recognition tests were performed on real Android phone and the results showed that in the same local area net the APP could show fish information rapidly and exactly within 1 s.

    Reference | Related Articles | Metrics | Comments0
    Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms
    FLORES Paulo, ZHANG Zhao
    Smart Agriculture    2021, 3 (2): 23-34.   DOI: 10.12133/j.smartag.2021.3.2.202104-SA003
    Abstract1177)   HTML135)    PDF(pc) (1857KB)(865)       Save

    Wheat lodging is a negative factor affecting yield production. Obtaining timely and accurate wheat lodging information is critical. Using unmanned aerial systems (UASs) images for wheat lodging detection is a relatively new approach, in which researchers usually apply a manual method for dataset generation consisting of plot images. Considering the manual method being inefficient, inaccurate, and subjective, this study developed a new image processing-based approach for automatically generating individual field plot datasets. Images from wheat field trials at three flight heights (15, 46, and 91 m) were collected and analyzed using machine learning (support vector machine, random forest, and K nearest neighbors) and deep learning (ResNet101, GoogLeNet, and VGG16) algorithms to test their performances on detecting levels of wheat lodging percentages: non- (0%), light (<50%), and severe (>50%) lodging. The results indicated that the images collected at 91 m (2.5 cm/pixel) flight height could yield a similar, even slightly higher, detection accuracy over the images collected at 46 m (1.2 cm/pixel) and 15 m (0.4 cm/pixel) UAS mission heights. Comparison of random forest and ResNet101 model results showed that ResNet101 resulted in more satisfactory performance (75% accuracy) with higher accuracy over random forest (71% accuracy). Thus, ResNet101 is a suitable model for wheat lodging ratio detection. This study recommends that UASs images collected at the height of about 91 m (2.5 cm/pixel resolution) coupled with ResNet101 model is a useful and efficient approach for wheat lodging ratio detection.

    Reference | Related Articles | Metrics | Comments0
    Advances and Challenges in Physiological Parameters Monitoring and Diseases Diagnosing of Dairy Cows Based on Computer Vision
    KANG Xi, LIU Gang, CHU Mengyuan, LI Qian, WANG Yanchao
    Smart Agriculture    2022, 4 (2): 1-18.   DOI: 10.12133/j.smartag.SA202204005
    Abstract1083)   HTML204)    PDF(pc) (1097KB)(1159)       Save

    Realizing the construction of intelligent farming by using advanced information technology, thus improving the living welfare of dairy cows and the economic benefits of dairy farms has become an important goal and task in dairy farming research field. Computer vision technology has the advantages of non-contact, stress-free, low cost and high throughput, and has a broad application prospect in animal production. On the basis of describing the importance of computer vision technology in the development of intelligent farming industry, this paper introduced the cutting-edge technology of cow physiological parameters and disease diagnosis based on computer vision, including cow temperature monitoring, body size monitoring, weight measurement, mastitis detection and lameness detection. The introduction coverd the development process of these studies, the current mainstream techniques, and discussed the problems and challenges in the research and application of related technology, aiming at the problem that the current computer vision-based detection methods are susceptible to individual difference and environmental changes. Combined with the development status of farming industry, suggestions on how to improve the universality of computer vision technology in intelligent farming industry, how to improve the accuracy of monitoring cows' physiological parameters and disease diagnosis, and how to reduce the influence of environment on the system were put forward. Future research work should focus on research and developmentof algorithm, make full use of computer vision technology continuous detection and the advantage of large amount of data, to ensure the accuracy of the detection, and improve the function of the system integration and data utilization, expand the computer vision system function. Under the premise that does not affect the ability of the system, to improve the study on the number of function integration and system function and reduce equipment costs.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Infield Corn Kernel Detection and Counting Based on Multiple Deep Learning Networks
    LIU Xiaohang, ZHANG Zhao, LIU Jiaying, ZHANG Man, LI Han, FLORES Paulo, HAN Xiongzhe
    Smart Agriculture    2022, 4 (4): 49-60.   DOI: 10.12133/j.smartag.SA202207004
    Abstract1047)   HTML111)    PDF(pc) (3336KB)(2117)       Save

    Machine vision has been increasingly used for agricultural sensing tasks. The detection method based on deep learning for infield corn kernels can improve the detection accuracy. In order to obtain the number of lost corn kernels quickly and accurately after the corn harvest, and evaluate the corn harvest combine performance on grain loss, the method of directly using deep learning technology to count corn kernels in the field was developed and evaluated. Firstly, an RGB camera was used to collect image with different backgrounds and illuminations, and the datasets were generated. Secondly, different target detection networks for kernel recognition were constructed, including Mask R-CNN, EfficientDet-D5, YOLOv5-L and YOLOX-L, and the collected 420 effective images were used to train, verify and test each model. The number of images in train, verify and test datasets were 200, 40 and 180, respectively. Finally, the counting performances of different models were evaluated and compared according to the recognition results of test set images. The experimental results showed that among the four models, YOLOv5-L had overall the best performance, and could reliably identify corn kernels under different scenes and light conditions. The average precision (AP) value of the model for the image detection of the test set was 78.3%, and the size of the model was 89.3 MB. The correct rate of kernel count detection in four scenes of non-occlusion, surface mid-level-occlusion, surface severe-occlusion and aggregation were 98.2%, 95.5%, 76.1% and 83.3%, respectively, and F1 values were 94.7%, 93.8%, 82.8% and 87%, respectively. The overall detection correct rate and F1 value of the test set were 90.7% and 91.1%, respectively. The frame rate was 55.55 f/s, and the detection and counting performance were better than Mask R-CNN, EfficientDet-D5 and YOLOX-L networks. The detection accuracy was improved by about 5% compared with the second best performance of Mask R-CNN. With good precision, high throughput, and proven generalization, YOLOv5-L can realize real-time monitoring of corn harvest loss in practical operation.

    Reference | Related Articles | Metrics | Comments0
    Research Progress and Enlightenment of Japanese Harvesting Robot in Facility Agriculture
    HUANG Zichen, SUGIYAMA Saki
    Smart Agriculture    2022, 4 (2): 135-149.   DOI: 10.12133/j.smartag.SA202202008
    Abstract1000)   HTML152)    PDF(pc) (1780KB)(3227)       Save

    Intelligent equipment is necessary to ensure stable, high-quality, and efficient production of facility agriculture. Among them, intelligent harvesting equipment needs to be designed and developed according to the characteristics of fruits and vegetables, so there is little large-scale mechanization. The intelligent harvesting equipment in Japan has nearly 40 years of research and development history since the 1980s, and the review of its research and development products has specific inspiration and reference significance. First, the preferential policies that can be used for harvesting robots in the support policies of the government and banks to promote the development of facility agriculture were introduced. Then, the development of agricultural robots in Japan was reviewed. The top ten fruits and vegetables in the greenhouse were selected, and the harvesting research of tomato, eggplant, green pepper, cucumber, melon, asparagus, and strawberry harvesting robots based on the combination of agricultural machinery and agronomy was analyzed. Next, the commercialized solutions for tomato, green pepper, and strawberry harvesting system were detailed and reviewed. Among them, taking the green pepper harvesting robot developed by the start-up company AGRIST Ltd. in recent years as an example, the harvesting robot developed by the company based on the Internet of Things technology and artificial intelligence algorithms was explained. This harvesting robot can work 24 h a day and can control the robot's operation through the network. Then, the typical strawberry harvesting robot that had undergone four generations of prototype development were reviewed. The fourth-generation system was a systematic solution developed by the company and researchers. It consisted of high-density movable seedbeds and a harvesting robot with the advantages of high space utilization, all-day work, and intelligent quality grading. The strengths, weaknesses, challenges, and future trends of prototype and industrialized solutions developed by universities were also summarized. Finally, suggestions for accelerating the development of intelligent, smart, and industrialized harvesting robots in China's facility agriculture were provided.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Technological Revolution, Disruptive Technology and Smart Agriculture
    HU Ruifa, LIU Wanjiawen
    Smart Agriculture    2022, 4 (4): 138-143.   DOI: 10.12133/j.smartag.SA202205002
    Abstract993)   HTML131)    PDF(pc) (475KB)(800)       Save

    This paper described the concept and basic satisfaction of scientific and technological revolution, defines the endogenous and exogenous agricultural disruptive technology. The revolution of agricultural science and technology refers to the process in which the key disruptive core technology innovation applied to agricultural production drives a series of technological innovations adopted in production. Endogenous disruptive technology in agriculture refers to technology indicators that can fundamentally change the original technology, such as productivity improvement, overturn the economic or social necessity of the adoption of the original technology, and completely replace the original technology. Particularly the paper puts forwards the concept of the transboundary technology and demonstrates its endogenous application and impacts on the development of agricultural industry. The transboundary technology for exogenous application refers to the technology whose original invention and innovation are applied in non-agricultural fields and has nothing to do with agricultural industry. Focusing on smart agriculture and the typical transboundary technology, the paper analyzed the characteristics of the smart agriculture, discussed its impacts on the traditional agricultural production and rural transformation. Smart agriculture technology will be the disruptive core technology to promote a new round of technological and industrial revolution and rural transformation. It will fundamentally change the production mode of traditional agriculture, realize factory production and promote the revolutionary transformation of rural areas. The production and application of smart agricultural technology in China has shown good economic and social benefits and great potential for production and application. However, the application of intelligent agricultural technology based on artificial intelligence technology is still in the exploratory stage. As an agricultural application of transboundary technology, the smart agricultural technology with intelligent sensing technology as the core is not dominated by agricultural scientists like agricultural machinery technology revolution, chemical technology revolution and green revolution technology. At present, the application smart agriculture technology in China is only in its infancy. Hence, policy recommendations of strengthening key disruptive technology development, reforming agricultural higher education system, promoting the agricultural industry development of the transboundary technology, and pushing the application of smart agriculture technology to be implemented in high standard farmland and large-scale farms of agricultural production, etc., were proposed to promote the development of smart agriculture.

    Reference | Related Articles | Metrics | Comments0
    Agricultural Intelligent Knowledge Service: Overview and Future Perspectives
    ZHAO Ruixue, YANG Chenxue, ZHENG Jianhua, LI Jiao, WANG Jian
    Smart Agriculture    2022, 4 (4): 105-125.   DOI: 10.12133/j.smartag.SA202207009
    Abstract968)   HTML137)    PDF(pc) (1435KB)(1684)       Save

    The wide application of advanced information technologies such as big data, Internet of Things and artificial intelligence in agriculture has promoted the modernization of agriculture in rural areas and the development of smart agriculture. This trend has also led to the boost of demands for technology and knowledge from a large amount of agricultural business entities. Faced with problems such as dispersiveness of knowledges, hysteric knowledge update, inadequate agricultural information service and prominent contradiction between supply and demand of knowledge, the agricultural knowledge service has become an important engine for the transformation, upgrading and high-quality development of agriculture. To better facilitate the agriculture modernization in China, the research and application perspectives of agricultural knowledge services were summarized and analyzed. According to the whole life cycle of agricultural data, based on the whole agricultural industry chain, a systematic framework for the construction of agricultural intelligent knowledge service systems towards the requirement of agricultural business entities was proposed. Three layers of techniques in necessity were designed, ranging from AIoT-based agricultural situation perception to big data aggregation and governance, and from agricultural knowledge organization to computation/mining based on knowledge graph and then to multi-scenario-based agricultural intelligent knowledge service. A wide range of key technologies with comprehensive discussion on their applications in agricultural intelligent knowledge service were summarized, including the aerial and ground integrated Artificial Intelligence & Internet-of-Things (AIoT) full-dimensional of agricultural condition perception, multi-source heterogeneous agricultural big data aggregation/governance, knowledge modeling, knowledge extraction, knowledge fusion, knowledge reasoning, cross-media retrieval, intelligent question answering, personalized recommendation, decision support. At the end, the future development trends and countermeasures were discussed, from the aspects of agricultural data acquisition, model construction, knowledge organization, intelligent knowledge service technology and application promotion. It can be concluded that the agricultural intelligent knowledge service is the key to resolve the contradiction between supply and demand of agricultural knowledge service, can provide support in the realization of the advance from agricultural cross-media data analytics to knowledge reasoning, and promote the upgrade of agricultural knowledge service to be more personalized, more precise and more intelligent. Agricultural knowledge service is also an important support for agricultural science and technologies to be more self-reliance, modernized, and facilitates substantial development and upgrading of them in a more effective manner.

    Reference | Related Articles | Metrics | Comments0
    Dynamic Simulation of Jujube Tree Growth and Water Use Evaluation Based on the Calibrated WOFOST Model
    BAI Tiecheng, WANG Tao, ZHANG Nannan
    Smart Agriculture    2021, 3 (2): 55-67.   DOI: 10.12133/j.smartag.2021.3.2.202103-SA008
    Abstract944)   HTML38)    PDF(pc) (1931KB)(617)       Save

    Irrigation schemes determined based on statistical analysis of field trials are usually only applicable to specific soils and meteorological environments. It is difficult to quantitatively analyze the impact of irrigation strategies on the growth of jujube trees. In order to realize the quantitative analysis of the influence of temperature, light and water resources on the growth of fruit trees, WOrld FOod Studies (WOFOST) model parameters were calibrated to simulate the jujube tree growth and water migration process. Firstly, the observed data obtained from field trials in 2016 and 2017 were used to calibrate the phenology development, initialization, green leaf, CO2 assimilation, dry matter partitioning, respiration, and water use parameters of the WOFOST model. Secondly, the time series of total above-ground biomass, leaf area index (LAI) and soil moisture content in field trials were dynamically simulated, and accuracy verification and analysis were also performed. Finally, the maximum LAI, yield, actual evapotranspiration (ETa) and water use efficiency (WUE) data of 55 orchards were employed to evaluate the performance of the calibrated model at the county scale. The results showed that the coefficient of determination R2 of TAGP simulated in the field test area was between 0.92 and 0.98, and the normalized root mean square error (NRMSE) was between 8.7% and 20.5%, the R2 of simulated LAI ranged from 0.79 to 0.97, and the NRMSE ranged from 8.3% to 21.1%. The R2 of the simulated soil moisture content was between 0.29 and 0.75, and the NRMSE ranged from 4.1% and 6.1%. The model could well simulate the time series of jujube tree growth dynamics and soil moisture content changes. At the county scale, the R2 between the simulated and measured maximum LAI were 0.64 and 0.78, and the NRMSE were 13.3% and 10.7% in 2016 and 2017, respectively. The simulated yield showed R2 value of 0.48 and 0.60, and NRMSE of 12.1% and 11.9%, respectively. RMSE of the simulated versus measured ETa were 36.1 mm (7.9%) and 30.8 mm (7.4%), respectively. The model also showed high WUE simulation accuracy (10%<NRMSE<20%) with RMSE values of 0.23 and 0.28 kg/m3 in 2016 and 2017, respectively. In short, WOFOST model achieved accurate simulation of jujube tree growth and water transport at the field and county scales, which may provide new ideas for the quantitative and mechanism analysis of the coupled effects of soil, weather, irrigation management and jujube tree growth.

    Reference | Related Articles | Metrics | Comments0
    Application Scenarios and Research Progress of Remote Sensing Technology in Plant Income Insurance
    CHEN Ailian, ZHAO Sijian, ZHU Yuxia, SUN Wei, ZHANG jing, ZHANG Qiao
    Smart Agriculture    2022, 4 (1): 57-70.   DOI: 10.12133/j.smartag.SA202201011
    Abstract921)   HTML90)    PDF(pc) (820KB)(913)       Save

    Plant income insurance has become an important part of agricultural insurance in China. It has been recommended to pilot since 2016 by Chinese government in several counties, and is now (2022) required to be implemented in all major grain producing counties in the 13 major grain producing provinces. The measurement of yield for plant income insurance in such huge volume urgently needs the support of remote sensing technology. Therefore, the development history and application status of remote sensing technology in the whole agricultural insurance industry was reviewed to help understanding the whole context circumstances of plant income insurance firstly. Then, the application scenarios of remote sensing technology were analyzed, and the key remote sensing technologies involved were introduced. The technologies involved include crop field plot extraction, crop classification, crop disaster estimation, and crop yield estimation. Research progress of these technologies were reviewed and summarized,and the satellite data sources that most commonly used in plant income insurance were summarized as well. It was found that to obtain a better support for a development of plant income insurance as well as all crop insurance from remote sensing communities, issues existed not only in the involved remote sensing technologies, but also in the remote sensing industry as well as the insurance industry. The most two important technical problems in the current application scenario of planting income insurance are that: the plot extraction and crop classification are not automated enough; the yield estimation mechanism is not strong, and the accuracy is not high. At the industry level, the first issue is the limitation of the remote sensing technology itself in that the remote sensing is not almighty, suffering from limited data source, either from satellite or from other platform, laborious data preprocessing, and pricey data fees for most of the data, and the second is the compatibility between the current business of the insurance industry and the combination of remote sensing. In this regard, this paper proposed in total five specific suggestions, which are: 1st, to establish a data distribution platform to solve the problems of difficult data acquisition and processing and standardization of initial data; 2nd, to improve the sample database to promote the automation of plot extraction and crop classification; 3rd, to achieve faster, more accurate and more scientific yields through multidisciplinary research; 4th, to standardize remote sensing technology application in agricultural insurance, and 5th, to write remote sensing applications in crop insurance contract. With these improvements, the application mode of plant income insurance and probably the whole agriculture insurance would run in a way with easily available data, more automated and intelligent technology, standards to follow, and contract endorsements.

    Reference | Related Articles | Metrics | Comments0
    Automatic Measurement of Multi-Posture Beef Cattle Body Size Based on Depth Image
    YE Wenshuai, KANG Xi, HE Zhijiang, LI Mengfei, LIU Gang
    Smart Agriculture    2022, 4 (4): 144-155.   DOI: 10.12133/j.smartag.SA202210001
    Abstract882)   HTML69)    PDF(pc) (1532KB)(932)       Save

    Beef cattle in the farm are active, which leads the collection of posture of the beef cattle changeable, so it is difficult to automatically measure the body size of the beef cattle. Aiming at the above problems, an automatic measurement method for beef cattle's body size under multi-pose was proposed by analyzing the skeleton features of beef cattle head and the edge contour features of beef cattle images. Firstly, the consumer-grade depth camera Azure Kinect DK was used to collect the top-view depth video data directly above the beef cattle and the video data were divided into frames to obtain the original depth image. Secondly, the original depth image was processed by shadow interpolation, normalization, image segmentation and connected domain to remove the complex background and obtain the target image containing only beef cattle. Thirdly, the Zhang-Suen algorithm was used to extract the beef cattle skeleton of the target image, and calculated the intersection points and endpoints of the skeleton, so as to analyze the characteristics of the beef cattle head to determine the head removal point, and to remove the beef cattle head information from the image. Finally, the curvature curve of the beef cattle profile was obtained by the improved U-chord curvature method. The body measurement points were determined according to the curvature value and converted into three-dimensional spaces to calculate the body size parameters. In this paper, the postures of beef cattle, which were analyzed by a large amount of depth image data, were divided into left crooked, right crooked, correct posture, head down and head up, respectively. The test results showed that the head removal method proposed based on the skeleton in multiple postures hads head removel success rate higher than 92% in the five postures. Using the body measurement point extraction method based on the improved U-chord curvature proposed, the average absolute error of body length measurement was 2.73 cm, the average absolute error of body height measurement was 2.07 cm, and the average absolute error of belly width measurement was 1.47 cm. The method provides a better way to achieve the automatic measurement of beef cattle body size in multiple poses.

    Reference | Related Articles | Metrics | Comments0
    Multi-Class on-Tree Peach Detection Using Improved YOLOv5s and Multi-Modal Images
    LUO Qing, RAO Yuan, JIN Xiu, JIANG Zhaohui, WANG Tan, WANG Fengyi, ZHANG Wu
    Smart Agriculture    2022, 4 (4): 84-104.   DOI: 10.12133/j.smartag.SA202210004
    Abstract879)   HTML101)    PDF(pc) (3285KB)(1113)       Save

    Accurate peach detection is a prerequisite for automated agronomic management, e.g., peach mechanical harvesting. However, due to uneven illumination and ubiquitous occlusion, it is challenging to detect the peaches, especially when the peaches are bagged in orchards. To this end, an accurate multi-class peach detection method was proposed by means of improving YOLOv5s and using multi-modal visual data for mechanical harvesting in this paper. RGB-D dataset with multi-class annotations of naked and bagging peach was proposed, including 4127 multi-modal images of corresponding pixel-aligned color, depth, and infrared images acquired with consumer-level RGB-D camera. Subsequently, an improved lightweight YOLOv5s (small depth) model was put forward by introducing a direction-aware and position-sensitive attention mechanism, which could capture long-range dependencies along one spatial direction and preserve precise positional information along the other spatial direction, helping the networks accurately detect peach targets. Meanwhile, the depthwise separable convolution was employed to reduce the model computation by decomposing the convolution operation into convolution in the depth direction and convolution in the width and height directions, which helped to speed up the training and inference of the network while maintaining accuracy. The comparison experimental results demonstrated that the improved YOLOv5s using multi-modal visual data recorded the detection mAP of 98.6% and 88.9% on the naked and bagging peach with 5.05 M model parameters in complex illumination and severe occlusion environment, increasing by 5.3% and 16.5% than only using RGB images, as well as by 2.8% and 6.2% when compared to YOLOv5s. As compared with other networks in detecting bagging peaches, the improved YOLOv5s performed best in terms of mAP, which was 16.3%, 8.1% and 4.5% higher than YOLOX-Nano, PP-YOLO-Tiny, and EfficientDet-D0, respectively. In addition, the proposed improved YOLOv5s model offered better results in different degrees than other methods in detecting Fuji apple and Hayward kiwifruit, verified the effectiveness on different fruit detection tasks. Further investigation revealed the contribution of each imaging modality, as well as the proposed improvement in YOLOv5s, to favorable detection results of both naked and bagging peaches in natural orchards. Additionally, on the popular mobile hardware platform, it was found out that the improved YOLOv5s model could implement 19 times detection per second with the considered five-channel multi-modal images, offering real-time peach detection. These promising results demonstrated the potential of the improved YOLOv5s and multi-modal visual data with multi-class annotations to achieve visual intelligence of automated fruit harvesting systems.

    Reference | Related Articles | Metrics | Comments0
    Investigation on Advances of Unmanned Aerial Vehicle Application Research in Agriculture and Forestry
    CHEN Meixiang, ZHANG Ruirui, CHEN Liping, TANG Qing, XIA Lang
    Smart Agriculture    2021, 3 (3): 22-37.   DOI: 10.12133/j.smartag.2021.3.3.202107-SA006
    Abstract872)   HTML94)    PDF(pc) (2611KB)(711)       Save

    Unmanned Aerial Vehicle(UAV) application in agriculture and forestry has the unique advantages of high efficiency, water and pesticide saving, and strong adaptability to complex terrain. The application research of UAV in agriculture and forestry has shown a fast growing trend. In order to explore the research hotspots and the scientific impact of countries/regions and institutions on UAV application in agriculture and forestry, the relevant literatures in the Web of Science(WoS) core collection database (2011-2020) were collected. The bibliometrics analysis was performed on the journal articles of UAV application in agriculture and forestry based on VOSviewer, WoS analysis tools and Microsoft Excel. The analysis results showed that the number of published papers increased rapidly since 2017, the researches on UAV application in agriculture and forestry were carried out in 94 countries/regions, including1778 institutions. Due to the strong scientific research group in the application of UAV in agriculture and forestry of the United States, China and Australia, a large number of papers had been published, resulting in a great academic influence. Remote sensing was the most widely used technology field of UAV application in agriculture and forestry, mainly involving remote sensing technology, ecological environment science, image processing technology, geological science, etc. Engineering was an important technical field of UAV application in agriculture and forestry, mainly involving control technology, sensor technology and fluid computing modeling technology related to UAV aerial pesticide application.There were 1508 articles and reviews been published in 398 journals, about 1.90% of all journals included in WoS core collection database, indicating that more and more journals paid attention to the application research of UAV in agriculture and forestry. Remote Sensing sponsored by MDPI (Multidisciplinary Digital Publishing Institute) was the journal that published the most of papers, the most cited paper mainly focused on the research status of UAV system in photogrammetry and remote sensing, including sensing, navigation, positioning and general data processing, etc. In addition, the analysis of the research hotspots of UAV application in agriculture and forestry showed that UAV pesticide application, UAV remote sensing of diseases and pests, plant phenotype acquisition were the research hotspots. This study can provide references for innovation research and cooperation between research teams of UAV application in agriculture and forestry.

    Reference | Related Articles | Metrics | Comments0
    Estimating Grain Protein Content of Winter Wheat in Producing Areas Based on Remote Sensing and Meteorological Data
    WANG Lin, LIANG Jian, MENG Fanyu, MENG Yang, ZHANG Yongtao, LI Zhenhai
    Smart Agriculture    2021, 3 (2): 15-22.   DOI: 10.12133/j.smartag.2021.3.2.202103-SA007
    Abstract871)   HTML62)    PDF(pc) (1605KB)(636)       Save

    With the rapid development of economy and people's living standards, people's demands for crops have changed from quantity to quality. The rise and rapid development of remote sensing technology provides an effective method for crop monitoring. Accurately predicting wheat quality before harvest is highly desirable to optimize management for farmers, grading harvest and categorized storage for the enterprise, future trading price, and policy planning. In this research, the main producing areas of winter wheat (Henan, Shandong, Hebei, Anhui and Jiangsu provinces) were chosed as the research areas, with collected 898 samples of winter wheat over growing seasons of 2008, 2009 and 2019. A Hierarchical Linear model (HLM) for estimating grain protein content (GPC) of winter wheat at heading-flowering stage was constructed to estimate the GPC of winter wheat in 2019 by using meteorological factors, remote sensing imagery and gluten type of winter wheat, where remote sensing data and gluten type were input variables at the first level of HLM and the meteorological data was used as the second level of HLM. To solve the problem of deviation in interannual and spatial expansion of GPC estimation model, maximum values of Enhanced Vegetation Index (EVI) from April to May calculated by moderate-resolution-imaging spectroradiometer were computed to represent the crop growth status and used in the GPC estimation model. Critical meteorological factors (temperature, precipitation, radiation) and their combinations for GPS estimation were compared and the best estimation model was used in this study. The results showed that the accuracy of GPC considering three meteorological factors performed higher accuracy (Calibrated set: R2 = 0.39, RMSE = 1.04%; Verification set: R2 = 0.43, RMSE = 0.94%) than the others GPC model with two meteorological factors or single meteorological factor. Therefore, three meteorological factors were used as input variables to build a winter wheat GPC forecast model for the regional winter wheat GPC forecast in this research. The GPC estimation model was applied to the GPC remote sensing estimation of the main winter wheat-producing areas, and the GPC prediction map of the main winter wheat producing areas in 2019 was obtained, which could obtain the distribution of winter wheat quality in the Huang-Huai-Hai region. The results of this study could provide data support for subsequent wheat planting regionalization to achieve green, high-yield, high-quality and efficient grain production.

    Reference | Related Articles | Metrics | Comments0
    Typical Raman Spectroscopy Ttechnology and Research Progress in Agriculture Detection
    GAO Zhen, ZHAO Chunjiang, YANG Guiyan, DONG Daming
    Smart Agriculture    2022, 4 (2): 121-134.   DOI: 10.12133/j.smartag.SA202201013
    Abstract857)   HTML82)    PDF(pc) (819KB)(1037)       Save

    Raman spectroscopy is a type of scattering spectroscopy with features such as rapid, less susceptible to moisture interference, no sample pre-treatment and in vivo detection. As a powerful characterization tool for analyzing and testing the molecular composition and structure of substances, Raman spectroscopy is also playing an extremely important role in the detection of plant and animal phenotypes, food safety, soil and water quality in the agricultural field with the continuous improvement of Raman spectroscopy technology. In this paper, the detection principles of Raman spectroscopy are introduced, and the new progresses of eight Raman spectroscopy technology are summarized, including confocal microscopy Raman spectroscopy, Fourier transform Raman spectroscopy, surface-enhanced Raman spectroscopy, tip-enhanced Raman spectroscopy, resonance Raman spectroscopy, spatially shifted Raman spectroscopy, frequency-shifted excitation Raman difference spectroscopy and Raman spectroscopy based on nonlinear optics, etc. And their advantages and disadvantages and application scenarios are prerented, respectively. The applications of Raman spectroscopy in plant detection, soil detection, water quality detection, food detection, etc. are summarized. It can be specifically subdivided into plant phenotype, plant stress, soil pesticide residue detection, soil colony detection, soil nutrient detection, food pesticide detection, food quality detection, food adulteration detection, and water quality detection. In future agricultural applications, the elimination of fluorescence background due to complex living organisms in Raman spectroscopy is the next research direction. The study of stable enhanced substrates is an important direction in the application of Surface Enhanced Raman Spectroscopy (SERS). In order to meet the measurement of different scenarios, portable and telemetric Raman spectrometers will also play an important role in the future. Raman spectroscopy needs to be further explored for a wide variety of research objects in agriculture, especially for applications in animal science, for which there is still a paucity of relevant studies up to now. In the existing field of agricultural research, it is necessary to pursue the characterization of more specific substances by Raman spectroscopy, which can prompt the application of Raman spectroscopy for a wider range of uses in agriculture. Further, the pursuit of lower detection limits and higher stability for practical applications is also the direction of development of Raman spectroscopy in the field of agriculture. Finally, the challenges that need to be solved and the future development directions of Raman spectroscopy are proposed in the field of agriculture in order to bring more inspiration to future agricultural production and research.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Research Progress and Technology Trend of Intelligent Morning of Dairy Cow Motion Behavior
    WANG Zheng, SONG Huaibo, WANG Yunfei, HUA Zhixin, LI Rong, XU Xingshi
    Smart Agriculture    2022, 4 (2): 36-52.   DOI: 10.12133/j.smartag.SA202203011
    Abstract850)   HTML110)    PDF(pc) (1155KB)(2011)       Save

    The motion behavior of dairy cows contains much of health information. The application of information and intelligent technology will help farms grasp the health status of dairy cows in time and improve breeding efficiency. In this paper, the development trend of intelligent morning technology of cow's motion behavior was mainly analyzed. Firstly, on the basis of expounding the significance of monitoring the basic motion (lying, walking, standing), oestrus, breathing, rumination and limping of dairy cows, the necessity of behavior monitoring of dairy cows was introduced. Secondly, the current research status was summarized from contact monitoring methods and non-contact monitoring methods in chronological order. The principle and achievements of related research were introduced in detail and classified. It is found that the current contact monitoring methods mainly rely on acceleration sensors, pedometers and pressure sensors, while the non-contact monitoring methods mainly rely on video images, including traditional video image analysis and video image analysis based on deep learning. Then, the development status of cow behavior monitoring industry was analyzed, and the main businesses and mainstream products of representative livestock farm automation equipment suppliers were listed. Industry giants, such as Afimilk and DeLaval, as well as their products such as intelligent collar (AfiCollar), pedometer (AfiActll Tag) and automatic milking equipment (VMS™ V300) were introduced. After that, the problems and challenges of current contact and non-contact monitoring methods of dairy cow motion behavior were put forward. The current intelligent monitoring methods of dairy cows' motion behavior are mainly wearable devices, but they have some disadvantages, such as bring stress to dairy cows and are difficult to install and maintain. Although the non-contact monitoring methods based on video image analysis technology does not bring stress to dairy cows and is low cost, the relevant research is still in its infancy, and there is still a certain distance from commercial use. Finally, the future development directions of relevant key technologies were prospected, including miniaturization and integration of wearable monitoring equipment, improving the robustness of computer vision technology, multi-target monitoring with limited equipment and promoting technology industrialization.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Agricultural Knowledge Intelligent Service Technology: A Review
    ZHAO Chunjiang
    Smart Agriculture    2023, 5 (2): 126-148.   DOI: 10.12133/j.smartag.SA202306002
    Abstract848)   HTML274)    PDF(pc) (3579KB)(1105)       Save

    Significance Agricultural environment is dynamic and variable, with numerous factors affecting the growth of animals and plants and complex interactions. There are numerous factors that affect the growth of all kinds of animals and plants. There is a close but complex correlation between these factors such as air temperature, air humidity, illumination, soil temperature, soil humidity, diseases, pests, weeds and etc. Thus, farmers need agricultural knowledge to solve production problems. With the rapid development of internet technology, a vast amount of agricultural information and knowledge is available on the internet. However, due to the lack of effective organization, the utilization rate of these agricultural information knowledge is relatively low.How to analyze and generate production knowledge or decision cases from scattered and disordered information is a big challenge all over the world. Agricultural knowledge intelligent service technology is a good way to resolve the agricultural data problems such as low rank, low correlation, and poor interpretability of reasoning. It is also the key technology to improving the comprehensive prediction and decision-making analysis capabilities of the entire agricultural production process. It can eliminate the information barriers between agricultural knowledge, farmers, and consumers, and is more conducive to improve the production and quality of agricultural products, provide effective information services. Progress The definition, scope, and technical application of agricultural knowledge intelligence services are introduced in this paper. The demand for agricultural knowledge services are analyzed combining with artificial intelligence technology. Agricultural knowledge intelligent service technologies such as perceptual recognition, knowledge coupling, and inference decision-making are conducted. The characteristics of agricultural knowledge services are analyzed and summarized from multiple perspectives such as industrial demand, industrial upgrading, and technological development. The development history of agricultural knowledge services is introduced. Current problems and future trends are also discussed in the agricultural knowledge services field. Key issues in agricultural knowledge intelligence services such as animal and plant state recognition in complex and uncertain environments, multimodal data association knowledge extraction, and collaborative reasoning in multiple agricultural application scenarios have been discussed. Combining practical experience and theoretical research, a set of intelligent agricultural situation analysis service framework that covers the entire life cycle of agricultural animals and plants and combines knowledge cases is proposed. An agricultural situation perception framework has been built based on satellite air ground multi-channel perception platform and Internet real-time data. Multimodal knowledge coupling, multimodal knowledge graph construction and natural language processing technology have been used to converge and manage agricultural big data. Through knowledge reasoning decision-making, agricultural information mining and early warning have been carried out to provide users with multi-scenario agricultural knowledge services. Intelligent agricultural knowledge services have been designed such as multimodal fusion feature extraction, cross domain knowledge unified representation and graph construction, and complex and uncertain agricultural reasoning and decision-making. An agricultural knowledge intelligent service platform composed of cloud computing support environment, big data processing framework, knowledge organization management tools, and knowledge service application scenarios has been built. Rapid assembly and configuration management of agricultural knowledge services could be provide by the platform. The application threshold of artificial intelligence technology in agricultural knowledge services could be reduced. In this case, problems of agricultural users can be solved. A novel method for agricultural situation analysis and production decision-making is proposed. A full chain of intelligent knowledge application scenario is constructed. The scenarios include planning, management, harvest and operations during the agricultural before, during and after the whole process. Conclusions and Prospects The technology trend of agricultural knowledge intelligent service is summarized in five aspects. (1) Multi-scale sparse feature discovery and spatiotemporal situation recognition of agricultural conditions. The application effects of small sample migration discovery and target tracking in uncertain agricultural information acquisition and situation recognition are discussed. (2) The construction and self-evolution of agricultural cross media knowledge graph, which uses robust knowledge base and knowledge graph to analyze and gather high-level semantic information of cross media content. (3) In response to the difficulties in tracing the origin of complex agricultural conditions and the low accuracy of comprehensive prediction, multi granularity correlation and multi-mode collaborative inversion prediction of complex agricultural conditions is discussed. (4) The large language model (LLM) in the agricultural field based on generative artificial intelligence. ChatGPT and other LLMs can accurately mine agricultural data and automatically generate questions through large-scale computing power, solving the problems of user intention understanding and precise service under conditions of dispersed agricultural data, multi-source heterogeneity, high noise, low information density, and strong uncertainty. In addition, the agricultural LLM can also significantly improve the accuracy of intelligent algorithms such as identification, prediction and decision-making by combining strong algorithms with Big data and super computing power. These could bring important opportunities for large-scale intelligent agricultural production. (5) The construction of knowledge intelligence service platforms and new paradigm of knowledge service, integrating and innovating a self-evolving agricultural knowledge intelligence service cloud platform. Agricultural knowledge intelligent service technology will enhance the control ability of the whole agricultural production chain. It plays a technical support role in achieving the transformation of agricultural production from "observing the sky and working" to "knowing the sky and working". The intelligent agricultural application model of "knowledge empowerment" provides strong support for improving the quality and efficiency of the agricultural industry, as well as for the modernization transformation and upgrading.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Strawberry Growth Period Recognition Method Under Greenhouse Environment Based on Improved YOLOv4
    LONG Jiehua, GUO Wenzhong, LIN Sen, WEN Chaowu, ZHANG Yu, ZHAO Chunjiang
    Smart Agriculture    2021, 3 (4): 99-110.   DOI: 10.12133/j.smartag.2021.3.4.202109-SA006
    Abstract837)   HTML79)    PDF(pc) (2697KB)(650)       Save

    Aiming at the real-time detection and classification of the growth period of crops in the current digital cultivation and regulation technology of facility agriculture, an improved YOLOv4 method for identifying the growth period of strawberries in a greenhouse environment was proposed. The attention mechanism into the Cross Stage Partial Residual (CSPRes) module of the YOLOv4 backbone network was introduced, and the target feature information of different growth periods of strawberries while reducing the interference of complex backgrounds was integrated, the detection accuracy while ensured real-time detection efficiency was improved. Took the smart facility strawberry in Yunnan province as the test object, the results showed that the detection accuracy (AP) of the YOLOv4-CBAM model during flowering, fruit expansion, green and mature period were 92.38%, 82.45%, 68.01% and 92.31%, respectively, the mean average precision (mAP) was 83.78%, the mean inetersection over union (mIoU) was 77.88%, and the detection time for a single image was 26.13 ms. Compared with the YOLOv4-SC model, mAP and mIoU were increased by 1.62% and 2.73%, respectively. Compared with the YOLOv4-SE model, mAP and mIOU increased by 4.81% and 3.46%, respectively. Compared with the YOLOv4 model, mAP and mIOU increased by 8.69% and 5.53%, respectively. As the attention mechanism was added to the improved YOLOv4 model, the amount of parameters increased, but the detection time of improved YOLOv4 models only slightly increased. At the same time, the number of fruit expansion period recognized by YOLOv4 was less than that of YOLOv4-CBAM, YOLOv4-SC and YOLOv4-SE, because the color characteristics of fruit expansion period were similar to those of leaf background, which made YOLOv4 recognition susceptible to leaf background interference, and added attention mechanism could reduce background information interference. YOLOv4-CBAM had higher confidence and number of identifications in identifying strawberry growth stages than YOLOv4-SC, YOLOv4-SE and YOLOv4 models, indicated that YOLOv4-CBAM model can extract more comprehensive and rich features and focus more on identifying targets, thereby improved detection accuracy. YOLOv4-CBAM model can meet the demand for real-time detection of strawberry growth period status.

    Reference | Related Articles | Metrics | Comments0
    Advances in Forage Crop Growth Monitoring by UAV Remote Sensing
    ZHUO Yue, DING Feng, YAN Haijun, XU Jing
    Smart Agriculture    2022, 4 (4): 35-48.   DOI: 10.12133/j.smartag.SA202206004
    Abstract828)   HTML117)    PDF(pc) (863KB)(1124)       Save

    Dynamic monitoring and quantitative estimation of forage crop growth are of great importance to the large-scale production of forage crop. UAV remote sensing has the advantages of high resolution, strong flexibility and low cost. In recent years, it has developed rapidly in the field of forage crop growth monitoring. In order to clarify the development status of forage crop growth monitoring and find the development direction, first, methods of UAV crop remote sensing monitoring were briefly described from two aspects of data acquisition and processing. Second, three key technologies of forage crop including canopy information extraction, spectral feature optimization and forage biomass estimation were described. Then the development trend of related research in recent years was analyzed, and it was pointed out that the number of papers published on UAV remote sensing forage crop monitoring showed an overall trend of rapidly increasing. With the rapid development of computer information technology and remote sensing technology, the application potential of UAV in the field of forage crop monitoring has been fully explored. Then, the research progress of UAV remote sensing in forage crop growth monitoring was described in five parts according to sensor types, i.e., visible, multispectral, hyperspectral, thermal infrared and LiDAR, and the research of each type of sensor were summarized and reviewed, pointing out that the current researches of hyperspectral, thermal infrared and LiDAR sensors in forage crop monitoring were less than that of visible and multispectral sensors. Finally, the future development directions were clarified according to the key technical problems that have not been solved in the research and application of UAV remote sensing forage crop growth monitoring: (1) Build a multi-temporal growth monitoring model based on the characteristics of different growth stages and different growth years of forage crops, carry out UAV remote sensing monitoring of forage crops around representative research areas to further improve the scope of application of the model. (2) Establish a multi-source database of UAV remote sensing, and carry out integrated collaborative monitoring combined with satellite remote sensing data, historical yield, soil conductivity and other data. (3) Develop an intelligent and user-friendly UAV remote sensing data analysis system, and shorten the data processing time through 5G communication network and edge computing devices. This paper could provide relevant technical references and directional guidelines for researchers in the field of forage crops and further promote the application and development of precision agriculture technology.

    Reference | Related Articles | Metrics | Comments0
    Scale Adaptive Small Objects Detection Method in Complex Agricultural Environment: Taking Bees as Research Object
    GUO Xiuming, ZHU Yeping, LI Shijuan, ZHANG Jie, LYU Chunyang, LIU Shengping
    Smart Agriculture    2022, 4 (1): 140-149.   DOI: 10.12133/j.smartag.SA202203003
    Abstract818)   HTML67)    PDF(pc) (1997KB)(766)       Save

    Objects in farmlands often have characteristic of small volume and high density with variable light and complex background, and the available object detection models could not get satisfactory recognition results. Taking bees as research objects, a method that could overcome the influence from the complex backgrounds, the difficulty in small object feature extraction was proposed, and a detection algorithm was created for small objects irrelevant to image size. Firstly, the original image was split into some smaller sub-images to increase the object scale, and the marked objects were assigned to the sub-images to produce a new dataset. Then, the model was trained again using transfer learning to get a new object detection model. A certain overlap rate was set between two adjacent sub-images in order to restore the objects. The objects from each sub-image was collected and then non-maximum suppression (NMS) was performed to delete the redundant detection boxes caused by the network, an improved NMS named intersection over small NMS (IOS-NMS) was then proposed to delete the redundant boxes caused by the overlap between adjacent sub-images. Validation tests were performed when sub-image size was set was 300×300, 500×500 and 700×700, the overlap rate was set as 0.2 and 0.05 respectively, and the results showed that when using single shot multibox detector (SSD) as the object detection model, the recall rate and precision was generally higher than that of SSD with the maximum difference 3.8% and 2.6%, respectively. In order to further verify the algorithm in small target recognition with complex background, three bee images with different scales and different scenarios were obtained from internet and test experiments were conducted using the new proposed algorithm and SSD. The results showed that the proposed algorithm could improve the performance of target detection and had strong scale adaptability and generalization. Besides, the new algorithm required multiple forward reasoning for a single image, so it was not time-efficient and was not suitable for edge calculation.

    Reference | Related Articles | Metrics | Comments0
    Research Progress of Key Technologies and Verification Methods of Numerical Modeling for Plant Protection Unmanned Aerial Vehicle Application
    TANG Qing, ZHANG Ruirui, CHEN Liping, LI Longlong, XU Gang
    Smart Agriculture    2021, 3 (3): 1-21.   DOI: 10.12133/j.smartag.2021.3.3.202107-SA004
    Abstract817)   HTML92)    PDF(pc) (2594KB)(1195)       Save

    With the increasing application of plant protection unmanned aerial vehicle (UAV) in precision agriculture, the numerical simulation methods for the development of the downwash flow field of the plant protection UAV and the deposition and drift process of droplets affected by the downwash flow field have achieved rapid and diversified development, but the advantages, disadvantages, scope of application, and verification of each method still lack a systematic review. This article discusses the inviscid model, computational fluid dynamics model and lattice Boltzmann model (LBM) respectively. The advantage of the inviscid wake vortex model based on the vortex element method is that the calculation process is simple. Moreover, integrated with the most widely used aerial spray drift prediction software AGricultural DISPersal (AGDISP), it can be a promising way to do real-time UAV spray drift prediction. But due to lack of viscosity and turbulence models, the droplet deposition and drift simulation accuracy of inviscid model is relatively lower than other models. The computational fluid dynamics (CFD) model includes the finite volume method (FVM) and the finite difference method (FDM). The FVM in the computational fluid dynamics model has high robustness and can be applied to the simulation of various complex environments. Many commercial CFD software are based on FVM and achieved a fast development in aerial spray modeling recently. However, the FVM is greatly affected by the quality of the mesh, and its commonly used upwind style has limited accuracy (second-order accuracy). Under the same mesh density, it is easier to generate artificial dissipation when simulating the rotor tip vortex than the finite difference method. As a result, the simulated rotor tip vortex dissipation speed is much faster than the actual situation. Compared with the FVM, the structured grid used in the FDM is easier to construct a high-order precision numerical format. Which can reach 4-5 orders of accuracy, and with adaptive grid technology, FDM can simulate the evolution of rotor tip vortex with high temporal and spatial accuracy, and can reproduce the typical flow structure development process of the real rotor downwash flow field. However, it also has problems such as high grid structure requirements and excessive computing power requirements. LBM has advantages in computing three-dimensional flow field problems with complex boundary conditions and non-stationary moving objects. However, there are still shortcomings in its functional diversity and completeness. The accuracy of the numerical models mentioned above still needs field test and indoor experiment such as high-speed Particle Image Velocimetry (PIV)/ Phase Doppler Interferometry (PDI) method to verify and optimize. The authors finally pointed out the future direction of plant protection UAV application simulation and verification.

    Reference | Related Articles | Metrics | Comments0
    Corn and Soybean Futures Price Intelligent Forecasting Based on Deep Learning
    XU Yulin, KANG Mengzhen, WANG Xiujuan, HUA Jing, WANG Haoyu, SHEN Zhen
    Smart Agriculture    2022, 4 (4): 156-163.   DOI: 10.12133/j.smartag.SA20220712
    Abstract801)   HTML98)    PDF(pc) (872KB)(786)       Save

    Corn and soybean are upland grain in the same season, and the contradiction of scrambling for land between corn and soybean is prominent in China, so it is necessary to explore the price relations between corn and soybean. In addition, agricultural futures have the function of price discovery compared with the spot. Therefore, the analysis and prediction of corn and soybean futures prices are of great significance for the management department to adjust the planting structure and for farmers to select the crop varieties. In this study, the correlation between corn and soybean futures prices was analyzed, and it was found that the corn and soybean futures prices have a strong correlation by correlation test, and soybean futures price is the Granger reason of corn futures price by Granger causality test. Then, the corn and soybean futures prices were predicted using a long short-term memory (LSTM) model. To optimize the futures price prediction model performance, Attention mechanism was introduced as Attention-LSTM to assign weights to the outputs of the LSTM model at different times. Specifically, LSTM model was used to process the input sequence of futures prices, the Attention layer assign different weights to the outputs, and then the model output the prediction results after a layer of linearity. The experimental results showed that Attention-LSTM model could significantly improve the prediction performance of both corn and soybean futures prices compared to autoregressive integrated moving average model (ARIMA), support vector regression model (SVR), and LSTM. For example, mean absolute error (MAE) was improved by 3.8% and 3.3%, root mean square error (RMSE) was improved by 0.6% and 1.8% and mean absolute error percentage (MAPE) was improved by 4.8% and 2.9% compared with a single LSTM, respectively. Finally, the corn futures prices were forecasted using historical corn and soybean futures prices together. Specifically, two LSTM models were used to process the input sequences of corn futures prices and soybean futures prices respectively, two parameters were trained to perform a weighted summation of the output of two LSTM models, and the prediction results were output by the model after a layer of linearity. The experimental results showed that MAE was improved by 6.9%, RMSE was improved by 1.1% and MAPE was improved by 5.3% compared with the LSTM model using only corn futures prices. The results verify the strong correlation between corn and soybean futures prices at the same time. In conclusion, the results verify the Attention-LSTM model can improve the performances of soybean and corn futures price forecasting compared with the general prediction model, and the combination of related agricultural futures price data can improve the prediction performances of agricultural product futures forecasting model.

    Reference | Related Articles | Metrics | Comments0
    Effect of Growing Season Drought and Flood on Yield of Spring Maize in Three Northeast Provinces of China
    WANG Weidan, SUN Li, PEI Zhiyuan, MA Shangjie, CHEN Yuanyuan, SUN Juanying, DONG Mo
    Smart Agriculture    2021, 3 (2): 126-137.   DOI: 10.12133/j.smartag.2021.3.2.202106-SA004
    Abstract797)   HTML57)    PDF(pc) (1771KB)(799)       Save

    With the change of global climate, extreme weather events such as drought and flood disasters occur frequently. These have a great impact on crop yields. As an important main grain producing area, the impact of drought and flood on the agricultural production of the three provinces in three northeast provinces of China cannot be ignored. Based on historic meteorological data such as daily precipitation, maximum temperature, minimum temperature, 2 m average wind speed, sunshine hours and relative humidity, etc., the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) during 1988-2017 in three northeast provinces of China were calculated with different time scales. Through comparing with characterization of drought and flood disasters in history, SPEI was chosen to judge drought and flood in the growth season of spring maize. With the purpose of evaluating the effects of drought and flood on spring maize yield, based on the distance correlation analysis method, the index of reasonable time scale and key month were selected to analyze the relationship between the index and the relative meteorological yield of spring maize. The relationship between water conditions at different growth stages and the yield was also analyzed. The results showed that: (1) both SPI and SPEI could represent the drought and flood conditions in three northeast provinces of China. Compared with SPI, SPEI had higher correlation with the drought and flood disaster rate, and SPEI was more advantageous in characterizing the drought and flood conditions in the study area; (2) relative meteorological yield was significantly correlated with drought disaster rate in all three provinces (P<0.01), and reached 0.05 significant level with flood disaster rate in Liaoning province, but not significant in Jilin and Heilongjiang province; (3) the distance correlation coefficient between SPEI3-8 and relative meteorological in Liaoning province was the largest, and that between SPEI6-8 and relative meteorological yield in Jilin and Heilongjiang province was the largest. SPEI and relative meteorological yield showed a downward parabolic trend. Overall, the impact of waterlogging on the yield in Liaoning was slightly less than that of drought, mild drought or moderate wet could lead to a decrease in yield. The impact of drought disaster in Jilin and Heilongjiang was much greater than that of flood, but severe humidity could lead to a decrease in yield. Compared with other provinces, the maize yield in Liaoning province fluctuated more sharply with the change of dry and wet; (4) in Liaoning province, maize may reach the highest yield when the jointing-heading period was close to severe wet, which was mainly affected by drought. In the late growing season, the impact of flood disasters was more severe than that of the early growing season, and both drought and flood disasters had effects on the yield. In Jilin province, the highest yield of spring maize was reached when SPEI was about 1.0 during the period of emergence-jointing and jointing-heading, and the effect of drought was more serious during the period heading-milking. The key growth periods in Heilongjiang province were mainly affected by drought, and the maximum yield was reached in the normal-wet years of emergence-jointing and jointing-heading stages, but medium-scale size or more severe floods still led to the decrease of maize yield. The high yield could be achieved in the slightly wet years in period of heading-milking stage, while the decrease could be caused by flood when it was severely wet. This research can provide a reference for estimating the impact of drought and flood disasters on spring maize and taking disaster prevention measures in three northeast provinces of China.

    Reference | Related Articles | Metrics | Comments0
    Research Progress and Outlook of Livestock Feeding Robot
    YANG Liang, XIONG Benhai, WANG Hui, CHEN Ruipeng, ZHAO Yiguang
    Smart Agriculture    2022, 4 (2): 86-98.   DOI: 10.12133/j.smartag.SA202204001
    Abstract795)   HTML93)    PDF(pc) (1912KB)(1138)       Save

    The production mode of livestock breeding has changed from extensive to intensive, and the production level is improved. However, low labor productivity and labor shortage have seriously restricted the rapid development of China's livestock breeding industry. As a new intelligent agricultural machinery equipment, agricultural robot integrates advanced technologies, such as intelligent monitoring, automatic control, image recognition technology, environmental modeling algorithm, sensors, flexible execution, etc. Using modern information and artificial intelligence technology, developing livestock feeding and pushing robots, realizing digital and intelligent livestock breeding, improving livestock breeding productivity are the main ways to solve the above contradiction. In order to deeply analyze the research status of robot technology in livestock breeding, products and literature were collected worldwide. This paper mainly introduced the research progress of livestock feeding robot from three aspects: Rail feeding robot, self-propelled feeding robot and pushing robot, and analyzed the technical characteristics and practical application of feeding robot.The rail feeding robot runs automatically along the fixed track, identifies the target animal, positions itself, and accurately completes feed delivery through preset programs to achieve accurate feeding of livestock. The self-propelled feeding robot can walk freely in the farm and has automatic navigation and positioning functions. The system takes single chip microcomputer as the control core and realizes automatic walking by sensor and communication module. Compared with the rail feeding robot, the feeding process is more flexible, convenient and technical, which is more conducive to the promotion and application of livestock farms. The pushing robot will automatically push the feed to the feeding area, promote the increase of feed intake of livestock, and effectively reduce the labor demand of the farm. By comparing the feeding robots of developed countries and China from two aspects of technology and application, it is found that China has achieved some innovation in technology, while developted countries do better in product application. The development of livestock robot was prospected. In terms of strategic planning, it is necessary to keep up with the international situation and the trend of technological development, and formulate the agricultural robot development strategic planning in line with China's national conditions. In terms of the development of core technologies, more attention should be paid to the integration of information perception, intelligent sensors and deep learning algorithms to realize human-computer interaction. In terms of future development trends, it is urgent to strengthen innovation, improve the friendliness and intelligence of the robot, and improve the learning ability of the robot. To sum up, intelligent livestock feeding and pushing machine operation has become a cutting-edge technology in the field of intelligent agriculture, which will surely lead to a new round of agricultural production technology reform, promote the transformation and upgrading of China's livestock industry. .

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    The Accuracy Differences of Using Unmanned Aerial Vehicle Images Monitoring Maize Plant Height at Different Growth Stages
    YANG Jin, MING Bo, YANG Fei, XU Honggen, LI Lulu, GAO Shang, LIU Chaowei, WANG Keru, LI Shaokun
    Smart Agriculture    2021, 3 (3): 129-138.   DOI: 10.12133/j.smartag.2021.3.3.202105-SA008
    Abstract786)   HTML80)    PDF(pc) (1548KB)(687)       Save

    The digital elevation model (DEM) of maize population in field was constructed by using optical imaging equipment mounted on unmanned aerial vehicle (UAV) to study the accuracy difference of maize population height monitoring at different growth stages. Three cultivars and eight sowing date treatments were set up to structure maize population with different plant heights. A multi-rotor UAV with high-definition digital camera and multispectral imaging sensor was used to take RGB images and multispectral images in the experiment area on July 25th and August 27th, 2018, which were the biggest and smallest differences in plant height. The DEM data of maize population and canopy height were obtained with image pose correction, image mosaic, point cloud generation, and space reconstruction, et al. The canopy height and plant height were normalized, and the correlation between different cultivars and sowing date was analyzed based on UAV and manual plant height measurement. The feasibility of using DEM data of maize canopy to monitor the difference of plant height was clarified. The results showed that the height difference of maize population could be reflected by the digital elevation information obtained from high-definition RGB camera and multispectral camera. The plant height monitoring accuracy of HD RGB camera was higher than that of multispectral camera. However, the monitoring accuracy of plant height was not enough under the ready-made image equipment and treatment method. So, it was difficult to reflect the smaller plant height difference of maize population. Growth stage had a great influence on the monitoring of maize plant height. When the canopy of early growth stage has not completely covered the surface or the leaf yellow and withered in the later stage of growth. The plant height of the population affected by the exposed surface was seriously underestimated. In this study, the effects of UAV imaging equipment on monitoring maize plant height were analyzed. The influence factors can be used as reference for the application of the method in field production.

    Reference | Related Articles | Metrics | Comments0
    Recent Advances on Application of Radio Frequency Heating in the Research of Post-Harvest Grain Storage and Processing
    LI Hongyue, LI Qingluan, ZHENG Jianjun, LING Bo, WANG Shaojin
    Smart Agriculture    2021, 3 (4): 1-13.   DOI: 10.12133/j.smartag.2021.3.4.202106-SA001
    Abstract785)   HTML69)    PDF(pc) (983KB)(942)       Save

    The storage and processing of grain are the basis for economic and social stability and development. As a new heating treatment technology based on electromagnetic wave, radio frequency technology has the characteristics of large penetration depth, rapid heating, volumetric heating and no chemical residue. It has been widely used in post-harvest research of grain and has potential industrial application prospects in some fields. To expound the research progress of the application of radio frequency heating technology in grain storage and processing, this review briefly described the basic principle and characteristics of radio frequency heating as well as the current commercial radio frequency heating system including free oscillation type and 50 Ω type. The basic research of radio frequency heating in grain storage and processing was summarized from three aspects: Dielectric properties of grain and pests, heat resistance of stored grain pests and heating uniformity of sample. The dielectric properties refer to the interaction between materials and electromagnetic waves in an electromagnetic field and determines the absorption and conversion of electromagnetic energy. It can predict the heating characteristics of grain and provide basic data for computer simulation to optimize process during radio frequency treatment. The heat resistance data of pests are necessary for the establishment and optimization of dis-infestations technology, so the kinetic date of thermal death of common stored grain pests were reported in this review. As a main hinder in the commercial application of radio frequency treatments, the heating uniformity has significant effect on heat treatment quality and results in potential food safety problems. The major factors causing heating non-uniformity are the non-uniformity of electromagnetic field, runaway heating and the sample shape effect. The improvement methods of heating uniformity were summarized from three aspects in this article including changing the electromagnetic field distribution, sample position, and optimizing the radio frequency working parameters. Based on the above basic research of radio frequency technology and combining with the practical problems in grain storage and processing, the applications of radio frequency heating in the fields of dis-infestations, sterilizing, enzyme inactivation and drying were also summarized. Finally, some suggestions on the application of this technology in grain storage and processing and future research directions were proposed. This review may play a certain guiding role for the application of radio frequency technology in grain storage and processing.

    Reference | Related Articles | Metrics | Comments0
    Advances in the Applications of Deep Learning Technology for Livestock Smart Farming
    GUO Yangyang, DU Shuzeng, QIAO Yongliang, LIANG Dong
    Smart Agriculture    2023, 5 (1): 52-65.   DOI: 10.12133/j.smartag.SA202205009
    Abstract771)   HTML134)    PDF(pc) (1118KB)(1377)       Save

    Accurate and efficient monitoring of animal information, timely analysis of animal physiological and physical health conditions, and automatic feeding and farming management combined with intelligent technologies are of great significance for large-scale livestock farming. Deep learning techniques, with automatic feature extraction and powerful image representation capabilities, solve many visual challenges, and are more suitable for application in monitoring animal information in complex livestock farming environments. In order to further analyze the research and application of artificial intelligence technology in intelligent animal farming, this paper presents the current state of research on deep learning techniques for tag detection recognition, body condition evaluation and weight estimation, and behavior recognition and quantitative analysis for cattle, sheep and pigs. Among them, target detection and recognition is conducive to the construction of electronic archives of individual animals, on which basis the body condition and weight information, behavior information and health status of animals can be related, which is also the trend of intelligent animal farming. At present, intelligent animal farming still faces many problems and challenges, such as the existence of multiple perspectives, multi-scale, multiple scenarios and even small sample size of a certain behavior in data samples, which greatly increases the detection difficulty and the generalization of intelligent technology application. In addition, animal breeding and animal habits are a long-term process. How to accurately monitor the animal health information in real time and effectively feed it back to the producer is also a technical difficulty. According to the actual feeding and management needs of animal farming, the development of intelligent animal farming is prospected and put forward. First, enrich the samples and build a multi perspective dataset, and combine semi supervised or small sample learning methods to improve the generalization ability of in-depth learning models, so as to realize the perception and analysis of the animal's physical environment. Secondly, the unified cooperation and harmonious development of human, intelligent equipment and breeding animals will improve the breeding efficiency and management level as a whole. Third, the deep integration of big data, deep learning technology and animal farming will greatly promote the development of intelligent animal farming. Last, research on the interpretability and security of artificial intelligence technology represented by deep learning model in the breeding field. And other development suggestions to further promote intelligent animal farming. Aiming at the progress of research application of deep learning in livestock smart farming, it provides reference for the modernization and intelligent development of livestock farming.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    From Stand to Organ Level—A Trial of Connecting DSSAT and GreenLab Crop Model through Data
    WANG Xiujuan, KANG Mengzhen, HUA Jing, DE REFFYE Philippe
    Smart Agriculture    2021, 3 (2): 77-87.   DOI: 10.12133/j.smartag.2021.3.2.202103-SA006
    Abstract765)   HTML34)    PDF(pc) (2152KB)(1276)       Save

    Crop models involve complex plant processes, which can be built in different scales of space and time, from molecule, cell, organ, tissue, individual to stand in space and from second to year in time. Based on different research requirements, switching the model scales can make the applicability of the model more extensive and flexible. How to switch the crop model from stand level to organ level is the content of this research. The DSSAT software (stand level) and functional-structural plant model 'GreenLab' (organ level) were chosen to explore the possibility to switch the crop model from stand to organ level. The DSSAT can simulate the growth and development processes of crops in detail according to the growth period by taking the data of weather, soil, crop management, and observational data as input. The GreenLab can simulate the growth and development and their interaction of crops by considering plant structure, and the model parameters can be estimated according to the measurements. In this study, the experimental data contains two parts: the measurements of four maize cultivars with two treatments (irrigated and rainfed) in DSSAT, and the simulations including the weights of leaves, internodes and fruits per day using DSSAT based on the measurements. The simulation results of DSSAT were used to calibrate the parameters of the environmental (E), sink strength (Po), and remobilization (kb and ki) in GreenLab, and to compute the weights of leaves, internodes and fruits for each phytomer. The simulation results of the GreenLab model were compared and analyzed with the experimental data and the simulations of DSSAT. The consistency of calculation results could be an indicator to explore the method of building an interface between different-scale crop models, and to compare the characteristics of different models. The results showed that the GreenLab model could reproduce the simulation data of the DSSAT and the measurement data, including the leaf area index (LAI) and the total weight of the plants, and further could compute the biomass for each organ (leaf, internode and fruit), and the biomass distribution among organs, the biomass production (Q), the demand (D) and the ratio between Q and D during the growth. Therefore, the detailed information of organ growth and development could be reproduced and the 3D structures of plant could be given. Finally, the advantages and application fields of different-scale model integration were discussed.

    Reference | Related Articles | Metrics | Comments0
    Evaluation of Droplet Size and Drift Distribution of Herbicide Sprayed by Plant Protection Unmanned Aerial Vehicle in Winter Wheat Field
    WANG Guobin, HAN Xin, SONG Cancan, YI Lili, LU Wenxia, LAN Yubin
    Smart Agriculture    2021, 3 (3): 38-51.   DOI: 10.12133/j.smartag.2021.3.3.202107-SA005
    Abstract764)   HTML31)    PDF(pc) (2496KB)(1054)       Save

    With the continuous increase of the spraying area, the problem of droplet drift risk in the spraying process of UAV is becoming increasingly prominent, especially the herbicide drift. In order to clarify the effect of the herbicide solution on the droplet size and the deposition and drift distribution characteristics sprayed by UAVs, the droplet sizes of 15 herbicide solutions sprayed by the centrifugal rotary atomizer nozzle installed in the plant protection UAV were measured in the laboratory, and the distribution of droplet deposition and drift in the spraying area and drift area were measured by adding a fluorescent tracer (60 g/hm2) to the tank in the field. The results showed that the herbicide solution had a significant effect on the droplet size distribution. The DV50 of all the other solutions was reduced after sprayed by the centrifugal atomizer except the Carfentrazone-ethyl water dispersible granule, and the maximum decrease ratio was 22.0%. The proportion of small droplets (V<150 μm) increased, with the maximum value of 50.8%. When the environmental crosswind speed was 3.76 m/s, the coverage and number of droplets in the spraying area were only 41.3% and 42.2% of that at 0.74 m/s, and the deposition uniformity was significantly reduced. In the drift zone, the deposition amount of droplets was under 10% of in-swath zone at the downwind of 12 m, and the deposition of all the treatments at 50 m was lower than detection limits (0.0002 μL/cm2). The drift ratio increased with the wind speed increased. When the crosswind speed reached 3.76 m/s, the drift ratio of droplets was 46.4%. Under different crosswind, 90% of the total measured spray drift were 4.8?22.4 m. By fitting the deposition in the drift zone with drift distance and crosswind speed, the downwind deposition was proportional to the crosswind speed. This study provides data support for droplet drift distance of plant protection UAV spraying in wheat fields at different wind speeds in winter and provides a basis for spray drift buffer zone, drift risk assessment, and relevant standard formulation.

    Reference | Related Articles | Metrics | Comments0
    EMD-RF-LSTM: Combination Prediction Model of Dissolved Oxygen Concentration in Prawn Culture
    YIN Hang, LI Xiangtong, XU Longqin, LI Jingbin, LIU Shuangyin, CAO Liang, FENG Dachun, GUO Jianjun, LI Liqiao
    Smart Agriculture    2021, 3 (2): 115-125.   DOI: 10.12133/j.smartag.2021.3.2.202106-SA008
    Abstract761)   HTML40)    PDF(pc) (1929KB)(702)       Save

    Dissolved oxygen is an important environmental factor for prawn breeding. In order to improve the prediction accuracy of dissolved oxygen concentration in prawn pond, and solve the problem of low prediction accuracy of different frequency domain modal classification after empirical modal decomposition of nonlinear time series data when there are few training samples, an combination prediction model based on empirical mode decomposition (EMD), random forest (RF) and long short term memory neural network (LSTM) was proposed in this research. Firstly, the time series data of prawn breeding dissolved oxygen concentration were decomposed at multiple scales by EMD to obtain a set of stationary intrinsic mode function (IMF). Secondly, with fewer training samples, poor predicts effects on the low-frequency were verified component by LSTM. Then, IMF1-IMF4 were divided into high-frequency components through test results and used for LSTM model. IMF5-IMF7, Rn were divided for RF model, the EMD-RF-LSTM combination model was constructed to improve the prediction accuracy. Modeled low-frequency and high-frequency components IMF using RF and LSTM, then predictions of each component were accumulated and the prediction value of dissolved oxygen of sequence data were got. Finally, the performance of the model was compared with the limit learning machine (ELM), RF, standard LSTM, EMD-ELM and EMD-RF, EMD-LSTM, etc. In the test based on real dataset, the EMD-ELM model contrasted with ELM model, reduced the mean absolute error (MAPE), root mean square error (RMSE) and mean absolute error (MAE) by 30.11%, 29.60% and 32.95%, respectively. The MAPE, RMSE, MAE for the proposed models were 0.0129,0.1156,0.0844, respectively. MAPE decreased by 84.07%, 57.57%, and 49.81% compared with EMD-ELM, EMD-RF and EMD-LSTM, respectively, the prediction accuracy was significantly improved. The results show that the proposed model EMD-RF-LSTM has good prediction performance and generalization ability, which is meets the actual demand of accurate prediction of dissolved oxygen concentration in prawn culture, and can provide reference for the prediction and early warning of prawn pond water quality.

    Reference | Related Articles | Metrics | Comments0
    High-Throughput Dynamic Monitoring Method of Field Maize Seedling
    ZHANG Xiaoqing, SHAO Song, GUO Xinyu, FAN Jiangchuan
    Smart Agriculture    2021, 3 (2): 88-99.   DOI: 10.12133/j.smartag.2021.3.2.202103-SA003
    Abstract756)   HTML65)    PDF(pc) (3369KB)(614)       Save

    At present, the dynamic detection and monitoring of maize seedling mainly rely on manual observation, which is time-consuming and laborious, and only small quadrats can be selected to estimate the overall emergence situation. In this research, two kinds of data sources, the high-time-series RGB images obtained by the plant high-throughput phenotypic platform (HTPP) and the RGB images obtained by the unmanned aerial vehicle (UAV) platform, were used to construct the image data set of maize seedling process under different light conditions. Considering the complex background and uneven illumination in the field environment, a residual unit based on the Faster R-CNN was built and ResNet50 was used as a new feature extraction network to optimize Faster R-CNN to realize the detection and counting of maize seedlings in complex field environment. Then, based on the high time series image data obtained by the HTPP, the dynamic continuous monitoring of maize seedlings of different varieties and densities was carried out, and the seedling duration and uniformity of each maize variety were evaluated and analyzed. The experimental results showed that the recognition accuracy of the proposed method was 95.67% in sunny days and 91.36% in cloudy days when it was applied to the phenotypic platform in the field. When applied to the UAV platform to monitor the emergence of maize, the recognition accuracy of sunny and cloudy days was 91.43% and 89.77% respectively. The detection accuracy of the phenotyping platform image was higher, which could meet the needs of automatic detection of maize emergence in actual application scenarios. In order to further verify the robustness and generalization of the model, HTPP was used to obtain time series data, and the dynamic emergence of maize was analyzed. The results showed that the dynamic emergence results obtained by HTPP were consistent with the manual observation results, which shows that the model proposed in this research is robust and generalizable.

    Reference | Related Articles | Metrics | Comments0
    Multi-Factor Coordination Control Technology of Promoting Early Maturing in Southern Blueberry Intelligent Greenhouse
    XU Lihong, LIU Huihui, XU He, WEI Ruihua, CAI Wentao
    Smart Agriculture    2021, 3 (4): 86-98.   DOI: 10.12133/j.smartag.2021.3.4.202109-SA007
    Abstract752)   HTML46)    PDF(pc) (1965KB)(1016)       Save

    In order to get blueberries goes on sale in advance and obtain greater economic benefits, southern blueberries were moved to an intelligent greenhouse with controllable environment for experimental production. The early maturing production control technology of southern blueberry intelligent greenhouse was explored and studied. First, a detailed and comprehensive investigation and summary were conducted on the production factors of blueberry soilless cultivation, such as the production characteristics of various blueberry varieties, the pH and composition of the substrate, the key points of water and fertilizer irrigation, and the scope of the microenvironment climate. Then, the existing Venlo-type greenhouse was deployed for blueberry production, and the geography, climate and internal structural conditions of the greenhouse were briefly described, and the greenhouse blueberry full-cycle control goal was planned. Finally, the production control system was designed and implemented based on the Internet of Things technology, and the overall framework of the software layer, the hardware layer and the cloud were introduced. Based on multi-factor coordinated control model of greenhouse environment, according to the characteristics of blueberry growth environment, a set of blueberry greenhouse multi-factor coordinated control algorithms were proposed and used for environmental regulation. The experimental greenhouse is located in the southeast of Huaqiao Town, Kunshan city, Suzhou city, Jiangsu province. It has been verified that the overall control system has a significant effect, and the first wave of fruits was harvested in early May 2021, making the southern variety of blueberry enter the fruit picking period nearly one month earlier. Compared with the blueberry plants without cold storage, the yields per plant of "Star" "Emerald" "Lanmei No. 1", and "Coast" after cold storage increased by 51.5%, 85.5%, 43.8%, and 94.7%, respectively, and the weight of each fruit was increased 10.9%, 7.2%, 2.6%, and 5.3%, respectively. Experiments proved that the use of multi-factor coordinated control algorithms for regulation can increase the yield and quality of blueberries and achieve significant economic benefits and provide a demonstration for the industrialization of blueberry plants in southern greenhouses to promote early maturity production and management.

    Reference | Related Articles | Metrics | Comments0
    Optimum Sowing Date of Winter Wheat in Next 40 Years Based on DSSAT-CERES-Wheat Model
    HU Yanan, LIANG Ju, LIANG Shefang, LI Shijuan, ZHU Yeping, E Yue
    Smart Agriculture    2021, 3 (2): 68-76.   DOI: 10.12133/j.smartag.2021.3.2.202104-SA005
    Abstract752)   HTML38)    PDF(pc) (1378KB)(664)       Save

    Climate change requires crop adaptation. Plantint at the suitable date is a key management technology to promote crop yield and address the impact of climate change. Wheat is one of the most important staple crops in China. Huang-Huai-Hai and Jiang-Huai regions are high-quality and high-quantity planting areas for wheat. To deal with the adverse effects of climate change and promote the winter wheat yield in Huang-Huai-Hai and Jiang-Huai regions, the optimum sowing date was identified by creating a wheat simulation with DSSAT CERES-Wheat model. The simulation experiment was designed with 51 management inputs of sowing date and 4 climate scenarios (RCPs) under baseline period (1985-2004) and 40 years in future for three representative stations in the study region. The optimum sowing data of winter wheat was corresponding to the simulation set with highest yield in each site. The characters of changes in climate factors during the growth period and the optimum sowing date among the different period were detected, and the yield increase planted at the optimum sowing date was quantified. The results showed that, in the future, the climate during winter wheat growth period showed a trend of warming and drying would shorten the growth period. The optimum sowing date would be postponed with the rise of temperature, and the decrease of latitude in all periods and under various climate scenarios. Relative to the baseline period, the maximum delay days of the optimal sowing date increased from north to south during 2030s, which were 5 days, 8 days and 13 days at the three representative stations, respectively. The optimum sowing times in 2050s were delayed in different degrees compared with that in 2030s. The largest postponed days at each station was at the RCP8.5 scenario in 2050s. Adopting the management of optimum planting date could mitigate climatic negative effects and was in varying degrees of yield increasing effect at three sites. The smallest increase occurred in Huang-Huai-Hai north region, while Huang-Huai-Hai south region and Jiang-Huai region had the relatively higher yield increasement about 2%-4%. Therefore, the present study demonstrated an effective management of optimum sowing date to promote winter wheat yield under climate change in Huang-Huai-Hai and Jiang-Huai regions.

    Reference | Related Articles | Metrics | Comments0
    High Quality Ramie Resource Screening Based on UAV Remote Sensing Phenotype Monitoring
    FU Hongyu, WANG Wei, LIAO Ao, YUE Yunkai, XU Mingzhi, WANG Ziwei, CHEN Jianfu, SHE Wei, CUI Guoxian
    Smart Agriculture    2022, 4 (4): 74-83.   DOI: 10.12133/j.smartag.SA202209001
    Abstract730)   HTML38)    PDF(pc) (1187KB)(764)       Save

    Ramie is an important fiber crop. Due to the shortage of land resources and the promotion of excellent varieties, the genetic variation and diversity of ramie decreased, which increased the need for investigation and protection of the ramie germplasm resources diversity. The crop phenotype measurement method based on UAV remote sensing can conduct frequent, rapid, non-destructive and accurate monitoring of different genotypes, which can fulfill the investigation of crop germplasm resources and screen specific and high-quality varieties. In order to realize efficient comprehensive evaluation of ramie germplasm phenotype and assist in screening of dominant ramie varieties, a method for monitoring and screening ramie germplasm phenotype was proposed based on UAV remote sensing images. Firstly, based on UAV remote sensing images, the digital surface model (DSM) and orthophoto of the test area were generated by Pix4dmapper. Then, the key phenotypic parameters (plant height, plant number, leaf area index, leaf chlorophyll content and water content) of ramie germplasm resources were estimated. The subtraction method was used to extract ramie plant height based on DSM, while the target detection algorithm was applied to extract ramie plant number based on orthographic images, and four machine learning methods were used to estimate the leaf area index (LAI), leaf chlorophyll content (SPAD value) and water content. Finally, according to the extracted remote sensing phenotypic parameters, the genetic diversity of ramie germplasm was analyzed by using variability analysis and principal component analysis. The results showed that: (1) The ramie phenotype estimation based on UAV remote sensing was effective, with the fitting accuracy of plant height 0.93, and the root mean square error (RMSE) 5.654 cm. The fitting indexes of SPAD value, water content and LAI were 0.66, 0.79 and 0.74, respectively, and RMSE were 2.03, 2.21 and 0.63, respectively; (2) The remote sensing phenotypes of ramie germplasm were significantly different, as the coefficients of variation of LAI, plant height and plant number reached 20.82%, 24.61% and 35.48%, respectively; (3) Principal component analysis was used to cluster the remote sensing phenotypes into factor 1 (plant height and LAI) and factor 2 (LAI and SPAD value), factor 1 can be used to evaluate the structural characteristics of ramie germplasm resources, and factor 2 can be used as the screening index of high-light efficiency ramie resources. This study could provide references for crop germplasm phenotypic monitoring and breeding correlation analysis.

    Reference | Related Articles | Metrics | Comments0
    Comparison of Remote Sensing Estimation Models for Leaf Area Index of Rubber Plantation in Hainan Island
    DAI Shengpei, LUO Hongxia, ZHENG Qian, HU Yingying, LI Hailiang, LI Maofen, YU Xuan, CHEN Bangqian
    Smart Agriculture    2021, 3 (2): 45-54.   DOI: 10.12133/j.smartag.2021.3.2.202106-SA003
    Abstract700)   HTML38)    PDF(pc) (2387KB)(828)       Save

    Leaf area index (LAI) is an important index to describe the growth status and canopy structure of vegetation, is of great theoretical and practical significance to quickly obtain LAI of large area vegetation and crops for ecosystem science research and agricultural & forestry production guidance. In this study, the typical tropical crop rubber tree in Hainan Island was selected as the research area, the LAI estimation model of rubber plantation based on satellite remote sensing vegetation indices was constructed, and its spatiotemporal variation was analyzed. The results showed that, compared with correlations between LAI and the indices of normalized difference vegetation index (NDVI), green NDVI (GNDVI), ratio vegetation index (RVI) and wide dynamic range vegetation index (WDRVI), correlations were higher between LAI and the indices of enhanced vegetation index (EVI), soil adjusted vegetation index (SAVI), difference vegetation index (DVI) and modified soil adjusted vegetation index (MSAVI). Among the LAI estimation models based on different vegetation indices (linear, exponential and logarithmic models), the linear estimation model based on EVI index was the best, and its coefficient of determination (R2) was 0.69. The accuracy of LAI estimation model was high. The linear fitting R2 of observed and simulated LAI was 0.67, the root mean square error (RMSE) was 0.16, and the average relative error (RE) was -0.25%. However, there was underestimation in the middle value and overestimation in the high and low value area of LAI. The high LAI values (4.40-6.23) were mainly distributed in Danzhou and Baisha in the west of Hainan Island, the middle LAI values (3.80-4.40) were mainly distributed in Chengmai, Tunchang and Qiongzhong in the middle of Hainan Island, and the low LAI values (2.69-3.80) were mainly distributed in Ding'an, Qionghai, Wanning, Ledong and Sanya in the east and south of Hainan Island. In summary, the linear estimation model for rubber plantation LAI based on EVI index obtained high accuracy, and has good values of popularization and appliance.

    Reference | Related Articles | Metrics | Comments0
    Time-Varying Heterotypic-Vehicle Cold Chain Logistics Distribution Path Optimization Model
    LIU Siyuan, CHEN Tian'en, CHEN Dong, ZHANG Chi, WANG Cong
    Smart Agriculture    2021, 3 (3): 139-151.   DOI: 10.12133/j.smartag.2021.3.3.202108-SA004
    Abstract696)   HTML51)    PDF(pc) (1122KB)(1314)       Save

    In view of the problems of constant speed and single carbon emission calculation method in the distribution model of fresh agricultural products in the transportation link of agricultural supply chain, combined with the time-varying characteristics of road network and the new multi vehicle carbon emission calculation method, this study put forward the distribution route optimization model of fresh agricultural products with four optimization objectives, which were the distribution distance, multi vehicle carbon emission, goods loss and vehicle fixed cost. In this model, the calculation of fuel consumption and carbon emission in the model would be affected by many factors, among which the load is the most important factor: Firstly, the average fuel consumption per 100 km of different trucks was calculated, then the CO2 emission factors of various trucks were calculated according to the carbon balance principle, and finally the average value of the results of each truck was taken as the carbon emission factor of the vehicle. According to those characteristics of the model, an improved double strategies co-evolutionary ant colony system (DC-ACS) was proposed. In this study, the main method was used to transform the problem into a solvable single objective problem. Then, the ant colony algorithm combined the coevolution mechanism, adaptive pheromone update strategy and local search mechanism were used to improve the solution effect of the algorithm. Finally, an appropriate fitness calculation method and stagnation avoidance strategy were designed to enhance the ability of the algorithm to jump out of local optimization. The C105 example of Solomon dataset was solved by using the improved ant colony algorithm. The optimal solutions on the four optimization objectives were 937.94 km, 4961.48 CNY, 4081.78 CNY and 7500.87 CNY respectively, which proved the effectiveness of the model proposed in this study. Based on the effectiveness of the model, the experimental results showed that the total distribution cost of the improved ant colony algorithm reduced by more than 14% on average compared with the basic ant colony algorithm on the four optimization objectives, which proved that the improved ant colony algorithm had more advantages. The improved ant colony algorithm was used to solve large-scale examples with different distributions: centralized, random and mixed. The optimal total costs were 19939.53 CNY, 24095 CNY and 24397.58 CNY, respectively. To sum up, the proposed model and algorithm could provide a good reference for the urban distribution path decision-making of cold chain logistics enterprises, a new idea to improve the distribution path optimization model and optimization method of smart agricultural supply chain, and a reference for enterprises to further expand their scale.

    Reference | Related Articles | Metrics | Comments0
    Research Progress and Application Prospect of Electronic Nose Technology in the Detection of Meat and Meat Products
    LIU Yang, JIA Wenshen, MA Jie, LIANG Gang, WANG Huihua, ZHOU Wei
    Smart Agriculture    2021, 3 (4): 29-41.   DOI: 10.12133/j.smartag.2021.3.4.202011-SA003
    Abstract696)   HTML41)    PDF(pc) (1178KB)(778)       Save

    With the continuous increase of import and export of various countries, people have put forward higher requirements on the efficiency and accuracy of meat and meat products safety indicators detection. Since electronic nose technology is simple to operate and allows rapid and nondestructive testing, it can meet today's need for efficient test of meat and meat products. In this paper, the detection principle of electronic nose technology was introduced firstly, and its development process was described from two aspects of hardware and software system. Then, the application research progress of electronic nose technology in meat and meat products detection in recent years from the aspects of freshness, adulteration, flavor evaluation and microbial contamination of meat and meat products was analyzed. Different electronic nose instruments and equipment or different pattern recognition algorithms result in different analysis results. Therefore, it highlighting the feasibility and advancement of electronic nose technology application in various aspects of meat and meat products detection. At the same time, in view of the application research results of electronic nose technology in the detection of meat and meat products, the paper pointed out the shortcomings of electronic nose technology, for example: The analysis effect of electronic nose technology was uneven, the price of electronic nose equipment was relatively expensive, and the application range of large electronic nose equipment was limited. Therefore, there were still some difficulties and problems of electronic nose technology in the aspects of universality and popularization. Finally, in view of the shortcomings of the current electronic nose technology, the development and application prospects of the electronic nose technology in the future were prospected. In terms of hardware system, with the research and development continuously of new gas sensitive materials, the durability and sensitivity to smell recognition of the electronic nose by improving the performance of the electrode film material of the electronic nose sensor array was enhanced. In terms of software system, with the upgrading continuously of computer systems, a supporting platform for the emerging and complex pattern recognition algorithms was provided. New pattern recognition algorithms in the pattern recognition system of electronic nose technology were explored and introduced, so that electronic nose technology can achieve faster and more accurate recognition and analysis of odors.

    Reference | Related Articles | Metrics | Comments0
    Monitoring Specified Depth Soil Moisture in Field Scale with Ground Penetrating Radar
    ZHANG Wenhan, DU Keming, SUN Yankun, LIU Buchun, SUN Zhongfu, MA Juncheng, ZHENG Feixiang
    Smart Agriculture    2022, 4 (1): 84-96.   DOI: 10.12133/j.smartag.SA202202010
    Abstract694)   HTML86)    PDF(pc) (2258KB)(1058)       Save

    Ground-penetrating radar (GPR) is one of the emerging technologies for soil moisture measurement. However, the measurement accuracy is difficult to determine due to some influence factors including radar wave frequency, soil texture type, etc. The GPR equipment with 1000 MHz center frequency and the measurement method of common midpoint (CMP) were adopted in the research to collect radar wave raw data in the selected field area under arid soil and moist soil conditions. The transmitter and receiver antennas of the GPR equipment were moved 0.01 m respectively in opposite directions on each radar wave raw data collection. Therefore, a CMP radar image consisted of 100 pieces of radar wave raw data by increasing the antenna distance from 0 m to 2 m. Each radar wave raw data indicated that the radar waves were reflected in the reflective layer with different dielectric constant under the same antenna distance. And the reflected and refracted radar waves were acquired by the receiving antenna at different two-way travel time respectively, and recorded in the computer. The collection of CMP soundings aimed to determine the inversion accuracy, optimum inversion depth, effective inversion depth and optimal inversion model of soil moisture content at different depth ranges and adjacent reflective layers by GPR at field scale. The reflected and refracted radar wave data were extracted from the raw data. The velocities of the surface waves and reflected waves were obtained respectively from the line slope of the surface wave data and the hyperbolic curves fitting of the reflected wave data. In addition, the relative dielectric constant of the soil at specified depth were deduced according to the soil dielectric constant and its reflected wave velocity. Moreover, 4 different models including Topp, Roth, Herkelrath and Ferre were used to figure out the soil volumetric water content inversion. Meanwhile, the measured data of soil volumetric moisture content obtained by oven drying method were used to verify the accuracy of the inversion results. The results showed that the effective inversion depth of 1000 MHz GPR ranged from 0 to 50 cm. The best inversion depth was 50 cm in arid soil and 40 cm in moist soil. The Roth model had the best correlation and stability with the highest R2 was 0.750, the Root Mean Square Error (RMSE) was 0.0114 m3/m3 and the lowest Relative Error (RE) was 3.0%. The GPR could possess the capacity of quick, precise and non-destructive measurement of specified depth soil moisture in field scale. The inversion model of soil moisture content needs to be calibrated according to different soil conditions.

    Reference | Related Articles | Metrics | Comments0
    Machine Learning Inversion Model of Soil Salinity in the Yellow River Delta Based on Field Hyperspectral and UAV Multispectral Data
    FAN Chengzhi, WANG Ziwen, YANG Xingchao, LUO Yongkai, XU Xuexin, GUO Bin, LI Zhenhai
    Smart Agriculture    2022, 4 (4): 61-73.   DOI: 10.12133/j.smartag.SA202212001
    Abstract691)   HTML46)    PDF(pc) (1831KB)(1101)       Save

    Soil salinization in the Yellow River Delta is a difficult and miscellaneous disease to restrict the development of agricultural economy, and further hinders agricultural production. To explore the retrieval of soil salt content from remote sensing images under the condition of no vegetation coverage, the typical area of the Yellow River Delta was taken as the study area to obtain the hyperspectral of surface features, the multispectral of UAVs and the soil salt content of sample points. Three representative experimental areas with flat terrain and obvious soil salinization characteristics were set up in the study area, and 90 samples were collected in total. By optimizing the sensitive spectral parameters, machine learning algorithms of partial least squares regression (PLSR) and random forest (RF) for inversion of soil salt content were used in the study area. The results showed that: (1) Hyperspectral band of 1972 nm had the highest sensitivity to soil salt content, with correlation r of -0.31. The optimized spectral parameters of shortwave infrared can improve the accuracy of estimating soil salt content. (2) RF model optimized by two different data sources had better stability than PLSR model. RF model performed well in terms of generalization ability and balance error, but it had some over-fitting problems. (3) RF model based on ground feature hyperspectral (R2 =0.54, verified RMSE=3.30 g/kg) was superior to the random forest model based on UAV multispectral (R2 =0.54, verified RMSE=3.35 g/kg). The combination of image texture features improved the estimation accuracy of multispectral model, but the verification accuracy was still lower than that of hyperspectral model. (4) Soil salt content based on UAV multi-spectral imageries and RF model was mapped in the study area. This study demonstrates that the level of soil salinization in the Yellow River Delta region is significantly different in geographical location. The cultivated land in the study area is mainly light and moderate salinized soil with has certain restrictions on crop cultivation. Areas with low soil salt content are suitable for planting crops in low salinity fields, and farmland with high soil salt content is suitable for planting crops with high salinity tolerance. This study constructed and compared the soil salinity inversion models of the Yellow River Delta from two different sources of data, optimized them based on the advantages of each data source, explored the inversion of soil salinity content without vegetation coverage, and can provide a reference for more accurate inversion of land salinization.

    Reference | Related Articles | Metrics | Comments0
    Identification and Level Discrimination of Waterlogging Stress in Winter Wheat Using Hyperspectral Remote Sensing
    YANG Feifei, LIU Shengping, ZHU Yeping, LI Shijuan
    Smart Agriculture    2021, 3 (2): 35-44.   DOI: 10.12133/j.smartag.2021.3.2.202105-SA001
    Abstract685)   HTML48)    PDF(pc) (1233KB)(576)       Save

    The frequent occurrence of waterlogging stress in winter wheat not only seriously affects regional food security and ecological security, but also threatens social and economic stability and sustainable development. In order to identify the waterlogging stress level of winter wheat, a waterlogging stress gradient pot experiment was set up in this research. Three factors were controlled: waterlogging stress level (control, slight waterlogging, severe waterlogging), stress duration (5 days, 10 days, 15 days) and wheat variety (YF4, JM31, JM38). Leaf and canopy hyperspectral data were measured by using ASD Field Spec3 and Gaiasky-mini2 imaging spectrometer, respectively. The data were collected from the first waterlogging day of winter wheat. The sunny and windless weather was selected and measured every 7 days until the wheat was mature. Combined with vegetation index, normalized mean distance and spectral derivative difference entropy, if winter wheat was under waterlogging stress was monitored and stress level was identified. The results showed that: 1) the spectral response characteristics of winter wheat under waterlogging stress changed significantly in RW, RE, NIR and 1650-1800 nm region, which may be due to the sensitivity of these regions to physiological parameters affecting the spectral response characteristics, such as pigment, nutrient, leaf internal structure, etc; 2) the simple ratio pigment index SRPI was the optimal vegetation index for identifying the waterlogging stress of winter wheat. The excellent performance of this vegetation index may come from its extreme sensitivity to the epoxidation state and photosynthetic efficiency of the xanthophyll cycle pigment; 3) the red light absorption valley (RW: 640-680 nm) region was the optimal region for identifying waterlogging stress level. In RW region, waterlogging stress level of winter wheat could be determined by the spectral derivative difference entropy at heading, flowering and filling stages. The greater the level of waterlogging stress, the greater the spectral derivative difference entropy. This may be due to the fact that the RW region was more sensitive to pigment content, and the spectral derivative difference entropy could reduce the effects of spectral noise and background. This study could provide a new method for monitoring waterlogging stress, and would have a good application prospect in the precise prevention and control of waterlogging stress. There are still shortcomings in this study, such as the difference between the pot experiment and the actual field environment, the lack of independent experimental verification, etc. Next research could add pot and field experiments, combine with cross-validation, to further verify the feasibility of this research method.

    Reference | Related Articles | Metrics | Comments0
    Pig Sound Analysis: A Measure of Welfare
    JI Nan, YIN Yanling, SHEN Weizheng, KOU Shengli, DAI Baisheng, WANG Guowei
    Smart Agriculture    2022, 4 (2): 19-35.   DOI: 10.12133/j.smartag.SA202204004
    Abstract683)   HTML59)    PDF(pc) (700KB)(977)       Save

    Pig welfare is closely related to the economical production of pig farms. With regard to pig welfare assessment, pig sounds are significant indicators, which can reflect the quality of the barn environment, the physical condition and the health of pigs. Therefore, pig sound analysis is of high priority and necessary. In this review, the relationship between pig sound and welfare was analyzed. Three kinds of pig sounds are closely related to pig welfare, including coughs, screams, and grunts. Subsequently, both wearable and non-contact sensors were briefly described in two aspects of advantages and disadvantages. Based on the advantages and feasibility of microphone sensors in contactless way, the existing techniques for processing pig sounds were elaborated and evaluated for further in-depth research from three aspects: sound recording and labeling, feature extraction, and sound classification. Finally, the challenges and opportunities of pig sound research were discussed for the ultimate purpose of precision livestock farming (PLF) in four ways: concerning sound monitoring technologies, individual pig welfare monitoring, commercial applications and pig farmers. In summary, it was found that most of the current researches on pig sound recognition tasks focused on the selection of classifiers and algorithm improvement, while fewer research was conducted on sound labeling and feature extraction. Meanwhile, pig sound recognition faces some challenging problems, involving the difficulty in obtaining the audio data from different pig growth stages and verifying the developed algorithms in a variety of pig farms. Overall, it is suggested that technologies involved in the automatic identification process should be explored in depth. In the future, strengthen cooperation among cross-disciplinary experts to promote the development and application of PLF is also nessary.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Estimating the Differences of Light Capture Between Rows Based on Functional-Structural Plant Model in Simultaneous Maize-Soybean Strip Intercropping
    LI Shuangwei, ZHU Junqi, EVERS Jochem B., VAN DER WERF Wopke, GUO Yan, LI Baoguo, MA Yuntao
    Smart Agriculture    2022, 4 (1): 97-109.   DOI: 10.12133/j.smartag.SA202202002
    Abstract681)   HTML44)    PDF(pc) (1459KB)(738)       Save

    Intercropping creates a heterogeneous canopy and triggers plastic responses in plant growth and structural development. In order to quantify the effect of planting pattern, strip width and row position on the structural development and light capture of maize and soybean in simultaneous intercropping, both experimental and modelling approaches were used. Field experiments were conducted in 2017-2018 with two sole crops (maize and soybean) and two intercrops: Two rows of maize alternating with two rows of soybeans (2:2 MS) and three rows of maize alternating with six rows of soybean (3:6 MS). The morphological traits of maize and soybean e.g., leaf length and width, internode length and diameter, leaf and petiole declination angle in different rows and different planting patterns, and photosynthetically active radiation (PAR) above and below the canopy of 2:2 MS were measured throughout the growing season. A functional-structural plant model of maize-soybean intercropping was developed in the GroIMP platform. The model was parameterized based on the morphological data set of 2017, and was validated with the leaf area index (LAI), plant height and PAR data set of 2018. The model simulated the morphological development of individual organs based on growing degree days (thermal time) and calculated the light capture at leaf level. The model well reproduced the observed dynamics of leaf area index and plant height (RMSE: 0.24-0.70 m2/m2 for LAI and 0.06-0.17 m for plant height), and the fraction of light capture in the 2:2 MS intercropping (RMSE: 0.06-0.10). Maize internode diameter in intercrops increased, but the internode length did not change. Soybean internodes in intercrops became longer and thinner compared to sole soybean probably caused by the shading imposed by maize, and the 2:2 MS had longer internodes than the 3:6 MS, indicating the effects of strip width. Simulated light capture of maize in 2:2 MS intercropping was 35.6% higher than sole maize. For maize in 3:6 MS intercropping, the light capture of the border rows and inner row were 27.8% and 20.3% higher than sole maize, respectively. Compared to sole soybean, the simulated light capture of soybean in border rows was 36.0% lower in 2:2 MS intercropping, and was 28.8% lower in 3:6 MS intercropping. For 3:6 MS intercropping, light capture of soybean in inner rows I and inner rows II were 4.1% and 1.8% lower than sole soybean, respectively. In the future, the model could be further developed and used to explore and optimize the planting patterns of maize soybean intercropping under different environmental conditions using light capture as an indicator.

    Reference | Related Articles | Metrics | Comments0
    Fast Counting Method of Soybean Seeds Based on Density Estimation and VGG-Two
    WANG Ying, LI Yue, WU Tingting, SUN Shi, WANG Minjuan
    Smart Agriculture    2021, 3 (4): 111-122.   DOI: 10.12133/j.smartag.2021.3.4.202101-SA002
    Abstract674)   HTML57)    PDF(pc) (1631KB)(821)       Save

    In order to count soybean seeds quickly and accurately, improve the speed of seed test and the level of soybean breeding, a method of soybean seed counting based on VGG-Two (VGG-T) was developed in this research. Firstly, in view of the lack of available image dataset in the field of soybean seed counting, a fast target point labeling method of combining pre-annotation based on digital image processing technology with manual correction annotation was proposed to speed up the establishment of publicly available soybean seed image dataset with annotation. Only 197 min were taken to mark 37,563 seeds when using this method, which saved 1592 min than ordinary manual marking and could reduce 96% of manual workload. At the same time, the dataset in this research is the largest annotated data set for soybean seed counting so far. Secondly, a method that combined the density estimation-based and the convolution neural network (CNN) was developed to accurately estimate the seed count from an individual threshed seed image with a single perspective. Thereinto, a CNN architecture consisting of two columns of the same network structure was used to learn the mapping from the original pixel to the density map. Due to the very limited number of training samples and the effect of vanishing gradients on deep neural networks, it is not easy for the network to learn all parameters at the same time. Inspired by the success of pre-training, this research pre-trained the CNN in each column by directly mapping the output of the fourth convolutional layer to the density map. Then these pre-trained CNNs were used to initialize CNNs in these two columns and fine-tune all parameters. Finally, the model was tested, and the effectiveness of the algorithm through three comparative experiments (with and without data enhancement, VGG16 and VGG-T, multiple sets of test set) was verified, which respectively provided 0.6 and 0.2 mean absolute error (MAE) in the original image and patch cases, while mean squared error (MSE) were 0.6 and 0.3. Compared with traditional image morphology operations, ResNet18, ResNet18-T and VGG16, the method proposed improving the accuracy of soybean seed counting. In the testset containing soybean seeds of different densities, the error fluctuation was small, and it still had excellent counting performance. At the same time, compared with manual counting and photoelectric seed counter, it saved about 2.493 h and 0.203 h respectively for counting 11,350 soybean seeds, realizing rapid soybean seeds counting.

    Reference | Related Articles | Metrics | Comments0
    Quantitative Determination of Plant Hormone Abscisic Acid Using Surface Enhanced Raman Spectroscopy
    ZHANG Yanyan, LI Can, SU Rui, LI Linze, WEI Wentao, LI Baolei, HU Jiandong
    Smart Agriculture    2022, 4 (1): 121-129.   DOI: 10.12133/j.smartag.SA202202001
    Abstract665)   HTML29)    PDF(pc) (1359KB)(449)       Save

    Plant hormone Abscisic Acid (ABA) plays an important role in regulating plant growth. However, the content of ABA in plant tissues is very low, and rapid and sensitive detection methods are urgently needed. In this study, a rapid and quantitative ABA detection method was established based on aptamer recognition and surface-enhanced Raman spectroscop (SERS). The gold nanoparticles modified by ABA aptamer had the characteristics of SERS signal enhancement and selective recognition, realizing the rapid and sensitive detection of trace ABA in complex plant sample matrix. When ABA molecules appeared in detect system, the aptamer would specifically bind with ABA molecules, and the aptamer folded into G-tetrad structure at same time, which wrapped ABA molecules in the tetrad structure, shortened the distance between ABA molecules and gold nanoparticles, and the enhanced and stable ABA molecules SERS signal were obtained. Under the condition of optimized aptamer concentration at 0.12 μmol/L, different concentrations of ABA solutions in the detection system were detected. Within the concentration range of 0.1-100 μmol/L, the SERS intensity of ABA presented a good linear relationship with the concentration. The detection limit of this method was 0.1 μmol/L and the linear correlation coefficient R2 was 0.9855. The repeatability test of 20 points randomly on SERS substrate showed that the relative standard deviation (RSD) was 6.71%, indicating the stability of SERS substrate was well. Furthermore, the substrate of gold nanoparticles modified by the ABA aptamer terminal with sulfhydryl group (SH-Apt) could be stored in the refrigerator for more than half a year, indicating that the substrate has good stability. Once the preparation of the synthesized SH-Apt modified gold nanoparticles was completed. It could be used on demand without the need to prepare SERS substrate for every detection. In this sense, the constructed aptamer SERS biosensor could realize the rapid and quantitative detection of ABA. The method was used for the determination of ABA in wheat leaves, and the result was in good agreement with the Enzyme Linked Immunosorbent Assay (ELISA) (The max relative error was 9.13%). This biosensor is an exploratory study on the detection of plant hormones by SERS, and the results of the study will have important reference value for the subsequent quantitative and on-site detection of ABA, as well as the detection of other plant hormones.

    Reference | Related Articles | Metrics | Comments0
    Detection Method of Apple Mould Core Based on Dielectric Characteristics
    LI Dongbo, HUANG Lyuwen, ZHAO Xubo
    Smart Agriculture    2021, 3 (4): 66-76.   DOI: 10.12133/j.smartag.2021.3.4.202102-SA035
    Abstract659)   HTML26)    PDF(pc) (1520KB)(550)       Save

    Apple mouldy core disease often occurs in the ventricle of apples and cannot be effectively identified by appearance. Near-infrared spectroscopy, nuclear magnetic resonance and other methods are usually used in traditional apple mouldy core disease detection, but these methods require complex equipment and high detection costs. In this research, a simple and fast nondestructive detection method of apple mouldy core disease was proposed by using a dielectric method to construct an apple mouldy core disease detection model. Japan's Hioki 3532-50 LCR tester was used to collect 108 dielectric indicators (12 dielectric indicators at 9 frequencies) of 220 apples as the original data. Due to the large differences in the distribution of data collected with different dielectric indexes and different frequencies, a standardized method was used for data preprocessing to eliminate the problem of large differences in dielectric data distribution. Afterwards, in order to eliminate the redundant information between the data, the principal component analysis algorithm was used to reduce the data dimensionality, and finally the three algorithms of BP neural network (BPNN), support vector machine (SVM) and random forest (RF) were used to construct the mouldy core disease detection model. After pre-experiment, the most effective parameters of each algorithm were selected, the test results showed that the apple mouldy core disease detection model based on the RF algorithm obtained the best performance, and the detection accuracy rate reached 96.66% and 95.71% in the training set (150 apples) and the test set (70 apples). The mouldy core disease detection model constructed by using BPNN was the second most effective, and the detection accuracy could reach 94.66% and 94.29%, respectively. The detection effect of the model built by using SVM was relatively poor, and the detection accuracies were 93.33% and 91.43%, respectively. The experimental results showed that the model constructed by using RF can more effectively identify mouldy core disease apples and healthy apples. This study could provide references for apple diseases and insect pests and non-destructive testing of apple quality.

    Reference | Related Articles | Metrics | Comments0
    Three-Dimensional Virtual Orchard Construction Method Based on Laser Point Cloud
    FENG Han, ZHANG Hao, WANG Zi, JIANG Shijie, LIU Weihong, ZHOU Linghui, WANG Yaxiong, KANG Feng, LIU Xingxing, ZHENG Yongjun
    Smart Agriculture    2022, 4 (3): 12-23.   DOI: 10.12133/j.smartag.SA202207002
    Abstract658)   HTML83)    PDF(pc) (2426KB)(931)       Save

    To solve the problems of low level of digitalization of orchard management and relatively single construction method, a three-dimensional virtual orchard construction method based on laser point cloud was proposed in this research. First, the hand-held 3D point cloud acquistion equipment (3D-BOX) combined with the lidar odometry and mapping (SLAM-LOAM) algorithm was used to complete the acquisition of the point cloud data set of orchard; then the outliers and noise points of the point cloud data were removed by using the statistical filtering algorithm, which was based on the K-neighbor distance statistical method. To achieve this, a distance threshold model for removing noise points was established. When a discrete point exceeded, it would be marked as an outlier, and the point was separated from the point cloud dataset to achieve the effect of discrete point filtering. The VoxelGrid filter was used for down sampling, the cloth simulation filtering (CSF) cloth simulation algorithm was used to calculate the distance between the cloth grid points and the corresponding laser point cloud, and the distinction between ground points and non-ground points was achieved by dividing the distance threshold, and when combined with the density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm, ground removal and cluster segmentation of orchard were realized; finally, the Unity3D engine was used to build a virtual orchard roaming scene, and convert the real-time GPS data of the operating equipment from the WGS-84 coordinate system to the Gauss projection plane coordinate system through Gaussian projection forward calculation. The real-time trajectory of the equipment was displayed through the LineRenderer, which realized the visual display of the motion trajectory control and operation trajectory of the working machine. In order to verify the effectiveness of the virtual orchard construction method, the test of orchard construction method was carried out in the Begonia fruit and the mango orchard. The results showed that the proposed point cloud data processing method could achieve the accuracy of cluster segmentation of Begonia fruit trees and mango trees 95.3% and 98.2%, respectively. Compared with the row spacing and plant spacing of fruit trees in the actual mango orchard, the average inter-row error of the virtual mango orchard was about 3.5%, and the average inter-plant error was about 6.6%. And compared the virtual orchard constructed by Unity3D with the actual orchard, the proposed method can effectively reproduce the actual three-dimensional situation of the orchard, and obtain a better visualization effect, which provides a technical solution for the digital modeling and management of the orchard.

    Reference | Related Articles | Metrics | Comments0
    Supply and Demand Forecasting Model of Multi-Agricultural Products Based on Deep Learning
    ZHUANG Jiayu, XU Shiwei, LI Yang, XIONG Lu, LIU Kebao, ZHONG Zhiping
    Smart Agriculture    2022, 4 (2): 174-182.   DOI: 10.12133/j.smartag.SA202203013
    Abstract652)   HTML74)    PDF(pc) (1057KB)(1047)       Save

    To further improve the simulation and estimation accuracy of the supply and demand process of agricultural products, a large number of agricultural data at the national and provincial levels since 1980 were used as the basic research sample, including production, planted area, food consumption, industrial consumption, feed consumption, seed consumption, import, export, price, GDP, population, urban population, rural population, weather and so on, by fully considering the impact factors of agricultural products such as varieties, time, income and economic development, a multi-agricultural products supply and demand forecasting model based on long short-term memory neural network (LSTM) was constructed in this study. The general thought of supply and demand forecasting model is packaging deep neural network training model as an I/O-opening modular model, reserving control interface for input of outside data, and realizing the indicators forecasting of supply and demand and matrixing of balance sheet. The input of model included forecasting balance sheet data of agricultural products, annual price data, general economic data, and international currency data since 2000. The output of model was balance sheet data of next decade since forecasting time. Under the premise of fully considering the mechanical constraints, the model used the advantages of deep learning algorithms in nonlinear model analysis and prediction to analyze and predict supply and demand of 9 main types of agricultural products, including rice, wheat, corn, soybean, pork, poultry, beef, mutton, and aquatic products. The production forecast results of 2019-2021 based on this model were compared and verified with the data published by the National Bureau of Statistics, and the mean absolute percentage error was 3.02%, which meant the average forecast accuracy rate of 2019-2021 was 96.98%. The average forecast accuracy rate was 96.10% in 2019, 98.26% in 2020, and 96.58% in 2021, which shows that with the increase of sample size, the prediction effect of intelligent learning model would gradually get better. The forecasting results indicate that the multi-agricultural supply and demand prediction model based on LSTM constructed in this study can effectively reflect the impact of changes in hidden indicators on the prediction results, avoiding the uncontrollable error introduced by manual experience intervention. The model can provide data production and technical support such as market warning, policy evaluation, resource management and public opinion analysis for agricultural production and management and macroeconomic regulation, and can provide intelligent technical support for multi-regional and inter-temporal agricultural outlook work by monitoring agricultural operation data in a timely manner.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Wheat Biomass Estimation in Different Growth Stages Based on Color and Texture Features of UAV Images
    DAI Mian, YANG Tianle, YAO Zhaosheng, LIU Tao, SUN Chengming
    Smart Agriculture    2022, 4 (1): 71-83.   DOI: 10.12133/j.smartag.SA202202004
    Abstract651)   HTML116)    PDF(pc) (1004KB)(552)       Save

    In order to realize the rapid and non-destructive monitoring of wheat biomass, field wheat trials were conducted based on different densities, nitrogen fertilizers and varieties, and unmanned aerial vehicle (UAV) was used to obtain RGB images in the pre-wintering stage, jointing stage, booting stage and flowering stage of wheat. The color and texture feature indices of wheat were obtained using image processing, and wheat biomass was obtained by manual field sampling in the same period. Then the relationship between different color and texture feature indices and wheat biomass was analyzed to select the suitable feature index for wheat biomass estimation. The results showed that there was a high correlation between image color index and wheat biomass in different stages, the values of r were between 0.463 and 0.911 (P<0.05). However, the correlation between image texture feature index and wheat biomass was poor, only 5 index values reached significant or extremely significant correlation level. Based on the above results, the color indices with the highest correlation to wheat biomass or the combining indices of color and texture features in different growth stages were used to construct estimation model of wheat biomass. The models were validated using independently measured biomass data, and the correlation between simulated and measured values reached the extremely significant level (P<0.01), and root mean square error (RMSE) was smaller. The R2 of color index model in the four stages were 0.538, 0.631, 0.708 and 0.464, and RMSE were 27.88, 516.99, 868.26 and 1539.81 kg/ha, respectively. The R2 of the model combined with color and texture index were 0.571, 0.658, 0.753 and 0.515, and RMSE were 25.49, 443.20, 816.25 and 1396.97 kg/ha, respectively. This indicated that the estimated results using the models were reliable and accurate. It also showed that the estimation models of wheat biomass combined with color and texture feature indices of UAV images were better than the single color index models.

    Reference | Related Articles | Metrics | Comments0
    Identifying Multiple Apple Leaf Diseases Based on the Improved CBAM-ResNet18 Model Under Weak Supervision
    ZHANG Wenjing, JIANG Zezhong, QIN Lifeng
    Smart Agriculture    2023, 5 (1): 111-121.   DOI: 10.12133/j.smartag.SA202301005
    Abstract618)   HTML83)    PDF(pc) (1490KB)(939)       Save

    To deal with the issues of low accuracy of apple leaf disease images recognition under weak supervision with only image category labeling, an improved CBAM-ResNet-based algorithm was proposed in this research. Using ResNet18 as the base model, the multilayer perceptron (MLP) in the lightweight convolutional block attention module (CBAM) attention mechanism channel was improved by up-dimensioning to amplify the details of apple leaf disease features. The improved CBAM attention module was incorporated into the residual module to enhance the key details of AlphaDropout with SeLU (Scaled Exponential Linearunits) to prevent overfitting of its network and accelerate the convergence effect of the model. Finally, the learning rate was adjusted using a single-cycle cosine annealing algorithm to obtain the disease recognition model. The training test was performed under weak supervision with only image-level annotation of all sample images, which greatly reduced the annotation cost. Through ablation experiments, the best dimensional improvement of MLP in CBAM was explored as 2. Compared with the original CBAM, the accuracy rate was increased by 0.32%, and the training time of each round was reduced by 8 s when the number of parameters increased by 17.59%. Tests were conducted on a dataset of 6185 images containing five diseases, including apple spotted leaf drop, brown spot, mosaic, gray spot, and rust, and the results showed that the model achieved an average recognition accuracy of 98.44% for the five apple diseases under weakly supervised learning. The improved CBAM-ResNet18 had increased by 1.47% compared with the pre-improved ResNet18, and was higher than VGG16, DesNet121, ResNet50, ResNeXt50, EfficientNet-B0 and Xception control model. In terms of learning efficiency, the improved CBAM-ResNet18 compared to ResNet18 reduced the training time of each round by 6 s under the condition that the number of parameters increased by 24.9%, and completed model training at the fastest speed of 137 s per round in VGG16, DesNet121, ResNet50, ResNeXt50, Efficient Net-B0 and Xception control models. Through the results of the confusion matrix, the average precision, average recall rate, and average F1 score of the model were calculated to reach 98.43%, 98.46%, and 0.9845, respectively. The results showed that the proposed improved CBAM-ResNet18 model could perform apple leaf disease identification and had good identification results, and could provide technical support for intelligent apple leaf disease identification providing.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    CFD Modeling and Experiment of Airflow at the Air Outlet of Orchard Air-Assisted Sprayer
    ZHAI Changyuan, ZHANG Yanni, DOU Hanjie, WANG Xiu, CHEN Liping
    Smart Agriculture    2021, 3 (3): 70-81.   DOI: 10.12133/j.smartag.2021.3.3.202106-SA007
    Abstract593)   HTML33)    PDF(pc) (2094KB)(613)       Save

    The tower-type sprayer produces swirling and irregular vertical airstream. The complex swirling results in airflow asymmetry between sides of the sprayer, and the vertical air velocity profile can be unpredictable when the rotational speed of the fan changes. The spray deposition is directly linked to the airflow pattern obtained from the sprayers. In order to study airflow field of this type of air-assisted sprayer, a CFD (Computational Fluid Dynamics) model for the tower-type sprayer was developed. A boundary condition setting method of UDF (User-Defined Function) sectional 3D air velocity was proposed. And the influences of turbulence models and the size of computational domain on CFD airflow simulation were studied. Using Fluent software, three different CFD models were established. The Model 1 took the average air velocity of 11 regions as the velocity inlet. The Model 2 used UDF segmented three-dimension air velocity line as the boundary condition. In order to further study the influence of the computational domain size on simulation, the Model 3 with a smaller computational domain was established. The turbulence model based on reynolds-averaged navier-stokes (RANS) control equation was used to calculate the airflow field in all models. In order to verify the reliability of the model, a three-dimensional measurement system of airflow field was designed, which was used for accurate and fast velocity measurement. The results showed that the Standard k-ε turbulence model, Realizable k-ε turbulence model, BSL k-w turbulence model, SST k-w turbulence model were suitable, and the Standard k-ε turbulence model was the best one. The CFD boundary condition setting method of UDF sectional three-dimension air velocity could improve the accuracy of simulation, and reduce the calculation complexity. With the same settings of other parameters, the performance of the CFD model with larger scale calculation domain was slightly better than that with smaller computational domain. The size of computational domain should be set to the appropriate extent, considering the calculation capacity and practical requirements of modelling. The research results could provide an important reference for CFD modeling of spray airflow field.

    Reference | Related Articles | Metrics | Comments0
    Irrigation Method and Verification of Strawberry Based on Penman-Monteith Model and Path Ranking Algorith
    ZHANG Yu, ZHAO Chunjiang, LIN Sen, GUO Wenzhong, WEN Chaowu, LONG Jiehua
    Smart Agriculture    2021, 3 (3): 116-128.   DOI: 10.12133/j.smartag.2021.3.3.202104-SA001
    Abstract588)   HTML55)    PDF(pc) (1359KB)(641)       Save

    Irrigation is an important factor that affects crop yield. In order to control irrigation of facility crops more effectively and accurately, this study took "Zhangji" strawberry as an example, introduced crop real-time growth characteristics into irrigation decision-making, and combined Penman-Monteith (P-M) model and knowledge reasoning to study the irrigation of strawberry. In the first step, the influencing factors and expert experience in identifying strawberry growth period of "Zhangji" strawberry irrigation were standardized, and the strawberry irrigation data structure based on Resource Description Framework (RDF) was established. The second step was to collect expert experience of strawberry irrigation according to the standardized knowledge structure model. Firstly, all data were unified into structured data, and then were stored in *.csv format together with expert experience, and strawberry irrigation knowledge map based on Neo4j was constructed. The third step was to collect the environmental data and plant data of strawberry in each growth period. The fourth step was using P-M model to calculate the initial irrigation value of strawberry, and then adjusted the initial irrigation value by knowledge reasoning.The fifth step was to conduct experimental planting and evaluate the sampled fruits. In knowledge reasoning, irrigation adjustment strategies of each expert was different. In strawberry irrigation experiment based on P-M model and path sorting algorithm, a group of irrigation reasoning values with the highest probability value were selected to adjust irrigation with the goal of maximizing strawberry yield. The experimental results showed that under the condition of harvesting at a specified time, The total fruit yield, average fruit yield per plant and average fruit weight percentage increased by 2478.5 g, 20.65 g and 12.15% (average fruit weight increased by 1.65 g per fruit) based on P-M model and path sorting algorithm compared with traditional P-M model, respectively. First, on the basis of P-M model, the yield-first irrigation adjustment strategy was adopted. Based on knowledge reasoning, the irrigation frequency and amount were adjusted timely according to the crop growth situation, which improved the yield. Second, under the condition of harvesting and recording yield at a specified time, the experiment accurately controlled the growth period to ensure early fruit ripening, while the other three groups of fruits were not fully mature and the yield of immature fruits were not calculated. Under the method of strawberry irrigation based on Penman-Monteith model and path sorting algorithm, the fruit was picked within a fixed time and reached 0.39 kg/cm2, which increased by 0.1 kg/cm2. Because the planting goal of this study was yield first, only the influence of irrigation on yield was considered. The experimental resulted show that the irrigation method based on model and knowledge reasoning could improve the yield of strawberry, and can provide a new idea for precise irrigation.

    Reference | Related Articles | Metrics | Comments0
    Effects on Control Efficacy of Pesticide-Adjuvants Mixture against Rice Chilo Suppressalis(walker) Based on Plant Protection Unmanned Aerial Vehicle
    ZI Le, ZANG Yu, HUANG Junhao, BAO Ruifeng, ZHOU Zhiyan, XIAO Hanxiang
    Smart Agriculture    2021, 3 (3): 52-59.   DOI: 10.12133/j.smartag.2021.3.3.202105-SA007
    Abstract581)   HTML29)    PDF(pc) (877KB)(1166)       Save

    To explore the effect of pesticide-adjuvants mixture on the control efficacy against Rice Chilo Suppressalis(walker). This study designed a three-factor, three-level orthogonal experiments with pesticides (10% emamectin benzoate·indoxacard SC, 5% chlorantraniliprole SC and 0.8% rotenone SC), adjuvants(organosilicon, lecithin and mineral Oil) , spray volume (21,24 and 27 L/hm2), referred to the three-factor, three-level orthogonal experimental scheme. And made the blank factor the deviation to analyze its rationality. Analysis of variance (ANOVA) statistical method was used to analyze the significance level of each factor. Duncan's new multiple range test (DMRT) method was used to analyze the order of the influence of different levels of each factor on the control efficacy against Rice Chilo Suppressalis(walker). The results showed that, under the experiment conditions of this research, the mean square value of the deviation factor was smaller than the mean square value of the pesticides, the adjuvants and the spray volume, and the deviation of the orthogonal experiment was within a reasonable range. The main order of the effect of the three factors on the control efficacy of Rice Chilo Suppressalis(walker) was: adjuvants > pesticides > spray volumn. On the 14th day after spraying, pesticides showed a significant effect on the control efficacy (P<0.05) and adjuvants showed a highly significant effect on the control efficacy (P<0.01), and spray volume showed no significant effect on the control efficacy. On the 14th day after spraying, the level 3 of the factor "pesticides" was more effective, in the order of Rotenone > Chlorantraniliprole > Emamectin Benzoate·Indoxacard. The level 1 of the factor "adjuvants" was more effective, in the order of Organosilicon > Lecithin > Mineral Oil. The level 3 of the factor "spray volume" was more effective, in the order of 27 L/hm2 > 24 L/hm2 > 21 L/hm2. Therefore, a preferred pesticide-adjuvants mixture method was 0.8% rotenone SC, organosilicon adjuvants and 27 L/hm2 of spray volume, which had a rapid and long-lasting control efficacy, and its control efficacy in the field reached 81.45% on the 14th day after spraying. Additionally, there was also a satisfactory pesticide-adjuvants mixture method that was 5% Chlorantraniliprole, organosilicon adjuvants and 24 L/hm2 of spray volume. This mixture method also performed well, achieving 79.3% control efficacy in the field on the 14th day after spraying. This study could provide a reference for the optimization of the mixture methods of solutions (pesticides, adjuvants and spray volume) for controlling Rice Chilo Suppressalis(walker).

    Reference | Related Articles | Metrics | Comments0
    Research Application of Artificial Intelligence in Agricultural Risk Management: A Review
    GUI Zechun, ZHAO Sijian
    Smart Agriculture    2023, 5 (1): 82-98.   DOI: 10.12133/j.smartag.SA202211004
    Abstract578)   HTML85)    PDF(pc) (1410KB)(834)       Save

    Agriculture is a basic industry deeply related to the national economy and people's livelihood, while it is also a weak industry. There are some problems with traditional agricultural risk management research methods, such as insufficient mining of nonlinear information, low accuracy and poor robustness. Artificial intelligence(AI) has powerful functions such as strong nonlinear fitting, end-to-end modeling, feature self-learning based on big data, which can solve the above problems well. The research progress of artificial intelligence technology in agricultural vulnerability assessment, agricultural risk prediction and agricultural damage assessment were first analyzed in this paper, and the following conclusions were obtained: 1. The feature importance assessment of AI in agricultural vulnerability assessment lacks scientific and effective verification indicators, and the application method makes it impossible to compare the advantages and disadvantages of multiple AI models. Therefore, it is suggested to use subjective and objective methods for evaluation; 2. In risk prediction, it is found that with the increase of prediction time, the prediction ability of machine learning model tends to decline. Overfitting is a common problem in risk prediction, and there are few researches on the mining of spatial information of graph data; 3. Complex agricultural production environment and varied application scenarios are important factors affecting the accuracy of damage assessment. Improving the feature extraction ability and robustness of deep learning models is a key and difficult issue to be overcome in future technological development. Then, in view of the performance improvement problem and small sample problem existing in the application process of AI technology, corresponding solutions were put forward. For the performance improvement problem, according to the user's familiarity with artificial intelligence, a variety of model comparison method, model group method and neural network structure optimization method can be used respectively to improve the performance of the model; For the problem of small samples, data augmentation, GAN (Generative Adversarial Network) and transfer learning can often be combined to increase the amount of input data of the model, enhance the robustness of the model, accelerate the training speed of the model and improve the accuracy of model recognition. Finally, the applications of AI in agricultural risk management were prospected: In the future, AI algorithm could be considered in the construction of agricultural vulnerability curve; In view of the relationship between upstream and downstream of agricultural industry chain and agriculture-related industries, the graph neural network can be used more in the future to further study the agricultural price risk prediction; In the modeling process of future damage assessment, more professional knowledge related to the assessment target can be introduced to enhance the feature learning of the target, and expanding the small sample data is also the key subject of future research.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Automatic Acquisition and Target Extraction of Beef Cattle 3D Point Cloud from Complex Environment
    LI Jiawei, MA Weihong, LI Qifeng, XUE Xianglong, WANG Zhiquan
    Smart Agriculture    2022, 4 (2): 64-76.   DOI: 10.12133/j.smartag.SA202206003
    Abstract566)   HTML51)    PDF(pc) (2809KB)(693)       Save

    Non-contact measurement based on the point cloud acquisition technology is able to alleviate the stress responses among beef cattle while collecting core body dimension data, but the current 3D data collection for beef cattle is usually time-consuming and easily influenced by the environment, which is in fact inapplicable to the actual breeding environment. In order to overcome the difficulty in obtaining the complete beef cattle point clouds, a non-contact phenotype data acquisition equipment was developed with a 3D reconstruction function, which can provide a large amount of standardized 3D quantitative phenotype data for beef cattle breeding and fattening process. The system is made up of a Kinect DK depth camera, an infrared grating trigger, and an Radio Frequency Identification (RFID) trigger, which enables the multi-angle instantaneous acquisition of beef cattle point clouds when the beef cattle pass through the walkway. The point cloud processing algorithm was developed based on the C++ platform and Point Cloud Library (PCL), and 3D reconstruction of beef cattle point clouds was achieved through spatial and outlier point filtering, Random Sample Consensus (RANSAC) shape fitting, point cloud thinning, and perceptual box filtering based on the dimensionality reduction density clustering to effectively filter out the interference, such as noises from the railings close to the beef cattle, without destroying the integrity of the point clouds. In the present work, a total of 124 sets of point clouds were successfully collected from 20 beef cattles on the actual farm using this system, and the target extraction experiments were completed. Notably, the beef cattle passed through the walkway in a natural state without any intervention during the whole data collection process. The experimental results showed that the acquisition success rate of this device was 91.89%. The coordinate system of the collected point cloud was consistent with the real situation and the body dimension reconstruction error was 0.6%. This device can realize the automatic acquisition and 3D reconstruction of beef cattle point cloud data from multiple angles without human intervention, and can automatically extract the target beef cattle point clouds from a complex environment. The point cloud data collected by this system help to restore the body size and shape of beef cattle, thereby provide solid support for the measurement of core parameters such as body height, body width, body oblique length, chest circumference, abdominal circumference, and body weight.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Monitoring Wheat Powdery Mildew (Blumeria graminis f. sp. tritici) Using Multisource and Multitemporal Satellite Images and Support Vector Machine Classifier
    ZHAO Jinling, DU Shizhou, HUANG Linsheng
    Smart Agriculture    2022, 4 (1): 17-28.   DOI: 10.12133/j.smartag.SA202202009
    Abstract564)   HTML100)    PDF(pc) (7036KB)(436)       Save

    Since powdery mildew (Blumeria graminis f. sp. tritici) mainly infects the foliar of wheat, satellite remote sensing technology can be used to monitor and assess it on a large scale. In this study, multisource and multitemporal satellite images were used to monitor the disease and improve the classification accuracy. Specifically, four Landsat-8 thermal infrared sensor (TIRS) and twenty MODerate-resolution imaging spectroradiometer (MODIS) temperature product (MOD11A1) were used to retrieve the land surface temperature (LST), and four Chinese Gaofen-1 (GF-1) wide field of view (WFV) images was used to identify the wheat-growing areas and calculate the vegetation indices (VIs). ReliefF algorithm was first used to optimally select the vegetation index (VIs) sensitive to wheat powdery mildew, spatial-temporal fusion between Landsat-8 LST and MOD11A1 data was performed using the spatial and temporal adaptive reflectance fusion model (STARFM). The Z-score standardization method was then used to unify the VIs and LST data. Four monitoring models were then constructed through a single Landsat-8 LST, multitemporal Landsat-8 LSTs (SLST), cumulative MODIS LST (MLST) and the combination of cumulative Landsat-8 and MODIS LST (SMLST) using the Support Vector Machine (SVM) classifier, that were LST-SVM, SLST-SVM, MLST-SVM and SMLST-SVM. Four assessment indicators including user accuracy, producer accuracy, overall accuracy and Kappa coefficient were used to compare the four models. The results showed that, the proposed SMLST-SVM obtained the best identification accuracies. The overall accuracy and Kappa coefficient of the SMLST-SVM model had the highest values of 81.2% and 0.67, respectively, while they were respectively 76.8% and 0.59 for the SLST-SVM model. Consequently, multisource and multitemporal LSTs can considerably improve the differentiation accuracies of wheat powdery mildew.

    Reference | Related Articles | Metrics | Comments0
    Rapid Detection of Imazalil Residues in Navel Orange Peel Using Surface-Enhanced Raman Spectroscopy
    ZHANG Sha, LIU Muhua, CHEN Jinyin, ZHAO Jinhui
    Smart Agriculture    2021, 3 (4): 42-52.   DOI: 10.12133/j.smartag.2021.3.4.202106-SA002
    Abstract559)   HTML24)    PDF(pc) (1209KB)(471)       Save

    Imazalil, a preservative for navel orange in the process of postharvest processing, is easy to seep into the flesh through the peel and produce residues in the flesh, which is vulnerable to cause endanger to human body if it was eaten accidentally. Base on this, a fast detection method of imazalil residues in navel orange peel ,namely surface-enhanced Raman spectroscopy (SERS) was proposed in this study. Firstly, the SERS detection conditions of imazalil residues in navel orange peel were optimized, and the optimal detection conditions were determined as follows: Reaction time of 2 min, gold colloid of 400 μL, NaBr as electrolyte solution, NaBr dosage of 25 μL. Based on the above optimal conditions, 6 groups of spectral data processed by adaptive iterative penalized least squares (air PLS), air PLS combination with normalization, air PLS combination with baseline correction, air PLS combination with first derivative, air PLS combination with standard normal distribution (SNV), air PLS combination with multiplicative scatter correction (MSC) were used to establish support vector regression (SVR) models and compare the models prediction performance. And air PLS method was selected as the spectral pretreatment method, because the value of correlation coefficient computed value of prediction set (RP) is the largest, and the value of root mean square error calculated value of the prediction set (RMSEP) is the smallest. Then, principal component analysis (PCA) was used to extract the features from spectral data, and the first seven principal component scores were selected as the input values of SVR prediction model. SVR, multiple linear regression (MLR) and partial least squares regression (PLSR) were used to analyze and compare the prediction performances. The RP value of prediction set of SVR prediction model could reach 0.9156, the RMSEP value of their prediction set was 4.8407 mg/kg, and the relative standard deviation computation value (RPD) was 2.3103, which indicated that the closer the predicted value of imazalil residue on navel orange surface based on SVR algorithm was to the measured value, the more effective the prediction accuracy of the model could be. The above data indicated that the speedy detection of imazalil residues in navel orange peel could be emploied by SERS coupled with PCA and SVR modeling method.

    Reference | Related Articles | Metrics | Comments0
    Phenotypic Traits Extraction of Wheat Plants Using 3D Digitization
    ZHENG Chenxi, WEN Weiliang, LU Xianju, GUO Xinyu, ZHAO Chunjiang
    Smart Agriculture    2022, 4 (2): 150-162.   DOI: 10.12133/j.smartag.SA202203009
    Abstract558)   HTML88)    PDF(pc) (1803KB)(667)       Save

    Aiming at the difficulty of accurately extract the phenotypic traits of plants and organs from images or point clouds caused by the multiple tillers and serious cross-occlusion among organs of wheat plants, to meet the needs of accurate phenotypic analysis of wheat plants, three-dimensional (3D) digitization was used to extract phenotypic parameters of wheat plants. Firstly, digital representation method of wheat organs was given and a 3D digital data acquisition standard suitable for the whole growth period of wheat was formulated. According to this standard, data acquisition was carried out using a 3D digitizer. Based on the definition of phenotypic parameters and semantic coordinates information contained in the 3D digitizing data, eleven conventional measurable phenotypic parameters in three categories were quantitative extracted, including lengths, thicknesses, and angles of wheat plants and organs. Furthermore, two types of new parameters for shoot architecture and 3D leaf shape were defined. Plant girth was defined to quantitatively describe the looseness or compactness by fitting 3D discrete coordinates based on the least square method. For leaf shape, wheat leaf curling and twisting were defined and quantified according to the direction change of leaf surface normal vector. Three wheat cultivars including FK13, XN979, and JM44 at three stages (rising stage, jointing stage, and heading stage) were used for method validation. The Open3D library was used to process and visualize wheat plant data. Visualization results showed that the acquired 3D digitization data of maize plants were realistic, and the data acquisition approach was capable to present morphological differences among different cultivars and growth stages. Validation results showed that the errors of stem length, leaf length, stem thickness, stem and leaf angle were relatively small. The R2 were 0.93, 0.98, 0.93, and 0.85, respectively. The error of the leaf width and leaf inclination angle were also satisfactory, the R2 were 0.75 and 0.73. Because wheat leaves are narrow and easy to curl, and some of the leaves have a large degree of bending, the error of leaf width and leaf angle were relatively larger than other parameters. The data acquisition procedure was rather time-consuming, while the data processing was quite efficient. It took around 133 ms to extract all mentioned parameters for a wheat plant containing 7 tillers and total 27 leaves. The proposed method could achieve convenient and accurate extraction of wheat phenotypes at individual plant and organ levels, and provide technical support for wheat shoot architecture related research.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Development and Performance Test of Variable Spray Control System Based on Target Leaf Area Density Parameter
    FAN Daoquan, ZHANG Meina, PAN Jian, LYU Xiaolan
    Smart Agriculture    2021, 3 (3): 60-69.   DOI: 10.12133/j.smartag.2021.3.3.202107-SA007
    Abstract556)   HTML31)    PDF(pc) (1798KB)(487)       Save

    Variable spray technology is an important means to improve pesticide utilization rate and save pesticide. Fruit tree is a kind of three-dimensional space, and the densities of branches and leaves in the canopy of fruit trees at different locations are different at the same time. The ideal state of spray is to adjust the amount of spray according to local characteristics, so as to realize the application of the spray on the canopy of fruit trees as required and improve the utilization rate of pesticide. In order to achieve the effect of reducing the dosage and increasing the efficiency of pesticide application, a variable spray control system was developed and the methods for computing leaf area density parameter and pulse width modulation(PWM)'s duty ratio of actuators were proposed. As the dosage parameter, the leaf area density was derived based on the point cloud density detected by LiDAR sensor on the upper computer. Then PWM's duty ratio was calculated based on the leaf area density and sent to the slave computer-PLC in real time. The communication between upper and slave computer was carried out through RS485 standard. So the spray flow of each nozzle was controlled by the switching frequency of the solenoid valve with PWM's duty ratio signal. Key parameters were obtained by the test including the net size of spray unit, delay time of the system and the function relationship between the PWM's duty ratio and the spray flow of nozzle. The test results showed that there was a linear relationship between the PWM's duty ratio and the spray flow of nozzle under the pressure of 0.2, 0.3 and 0.4 MPa, and the linear goodness of fit were all above 0.98. Finally, the effectiveness of the variable spray system was verified by the spray test. The test results showed that the minimum number of droplets per unit area (cm2) on the water-sensitive paper was 35 drops at the sampling point, which was higher than the 25 drops defined by the common method for the spray amplitude of aerosol in the air supply spray. Under 39.9% of the canopy ratio between the target canopy area and the whole area, the variable spraying mode saved 71.96% of the pesticide dosage compared with the continuous spraying mode, and 29.72% compared with the target spraying mode, achieving the dose reduction effect.

    Reference | Related Articles | Metrics | Comments0
    Agricultural Robots: Technology Progress, Challenges and Trends
    ZHAO Chunjiang, FAN Beibei, LI Jin, FENG Qingchun
    Smart Agriculture    2023, 5 (4): 1-15.   DOI: 10.12133/j.smartag.SA202312030
    Abstract554)   HTML145)    PDF(pc) (2498KB)(341)       Save

    [Significance] Autonomous and intelligent agricultural machinery, characterized by green intelligence, energy efficiency, and reduced emissions, as well as high intelligence and man-machine collaboration, will serve as the driving force behind global agricultural technology advancements and the transformation of production methods in the context of smart agriculture development. Agricultural robots, which utilize intelligent control and information technology, have the unique advantage of replacing manual labor. They occupy the strategic commanding heights and competitive focus of global agricultural equipment and are also one of the key development directions for accelerating the construction of China's agricultural power. World agricultural powers and China have incorporated the research, development, manufacturing, and promotion of agricultural robots into their national strategies, respectively strengthening the agricultural robot policy and planning layout based on their own agricultural development characteristics, thus driving the agricultural robot industry into a stable growth period. [Progress] This paper firstly delves into the concept and defining features of agricultural robots, alongside an exploration of the global agricultural robot development policy and strategic planning blueprint. Furthermore, sheds light on the growth and development of the global agricultural robotics industry; Then proceeds to analyze the industrial backdrop, cutting-edge advancements, developmental challenges, and crucial technology aspects of three representative agricultural robots, including farmland robots, orchard picking robots, and indoor vegetable production robots. Finally, summarizes the disparity between Chinese agricultural robots and their foreign counterparts in terms of advanced technologies. (1) An agricultural robot is a multi-degree-of-freedom autonomous operating equipment that possesses accurate perception, autonomous decision-making, intelligent control, and automatic execution capabilities specifically designed for agricultural environments. When combined with artificial intelligence, big data, cloud computing, and the Internet of Things, agricultural robots form an agricultural robot application system. This system has relatively mature applications in key processes such as field planting, fertilization, pest control, yield estimation, inspection, harvesting, grafting, pruning, inspection, harvesting, transportation, and livestock and poultry breeding feeding, inspection, disinfection, and milking. Globally, agricultural robots, represented by plant protection robots, have entered the industrial application phase and are gradually realizing commercialization with vast market potential. (2) Compared to traditional agricultural machinery and equipment, agricultural robots possess advantages in performing hazardous tasks, executing batch repetitive work, managing complex field operations, and livestock breeding. In contrast to industrial robots, agricultural robots face technical challenges in three aspects. Firstly, the complexity and unstructured nature of the operating environment. Secondly, the flexibility, mobility, and commoditization of the operation object. Thirdly, the high level of technology and investment required. (3) Given the increasing demand for unmanned and less manned operations in farmland production, China's agricultural robot research, development, and application have started late and progressed slowly. The existing agricultural operation equipment still has a significant gap from achieving precision operation, digital perception, intelligent management, and intelligent decision-making. The comprehensive performance of domestic products lags behind foreign advanced counterparts, indicating that there is still a long way to go for industrial development and application. Firstly, the current agricultural robots predominantly utilize single actuators and operate as single machines, with the development of multi-arm cooperative robots just emerging. Most of these robots primarily engage in rigid operations, exhibiting limited flexibility, adaptability, and functionality. Secondly, the perception of multi-source environments in agricultural settings, as well as the autonomous operation of agricultural robot equipment, relies heavily on human input. Thirdly, the progress of new teaching methods and technologies for human-computer natural interaction is rather slow. Lastly, the development of operational infrastructure is insufficient, resulting in a relatively low degree of "mechanization". [Conclusions and Prospects] The paper anticipates the opportunities that arise from the rapid growth of the agricultural robotics industry in response to the escalating global shortage of agricultural labor. It outlines the emerging trends in agricultural robot technology, including autonomous navigation, self-learning, real-time monitoring, and operation control. In the future, the path planning and navigation information perception of agricultural robot autonomy are expected to become more refined. Furthermore, improvements in autonomous learning and cross-scenario operation performance will be achieved. The development of real-time operation monitoring of agricultural robots through digital twinning will also progress. Additionally, cloud-based management and control of agricultural robots for comprehensive operations will experience significant growth. Steady advancements will be made in the innovation and integration of agricultural machinery and techniques.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Detection of Peel Puffing and Granulation in Citrus Based on Soft X-ray Imaging Technology
    XU Qian, CAI Jianrong, DU Can, SUN Li, BAI Junwen
    Smart Agriculture    2021, 3 (4): 53-65.   DOI: 10.12133/j.smartag.2021.3.4.202106-SA009
    Abstract553)   HTML38)    PDF(pc) (1718KB)(552)       Save

    The internal quality of citrus is an important index for citrus grading, and the most common factors affecting the internal quality of citrus are peel puffing and granulation, which affect the fruit quality and lose the market value due to the large consumption of nutrients. In this study, a soft X-ray imaging device was developed, including a transmission device, a soft X-ray imaging device, a trigger device and a soft X-ray protection device, for the problem that traditional methods cannot detect citrus peel puffing and granulation efficiently and non-destructively. In this research, the detection parameters were determined according to the physical characteristics of wide peeled citrus, and the clarity, contrast and aberration rate of citrus images were used as the judging criteria. The best imaging parameters were determined by adjusting the parameters of the imaging device as follows: The tube voltage of X-ray source was 60 kV, the tube current was 1.3 mA, the integration time of line array detector was 5.5 ms, and the transmission speed of citrus conveyor belt was 10 cm/s. The aberrations in the column direction were detected by the circular hole metal plate, and the results showed that the transmission speed was stable and the aberrations in the column direction were negligible. The aberrations in the row direction ware detected by using the 70 mm stainless steel calibration sphere, and the projection aberration coefficients at different positions in the row direction were calculated, and the aberration correction model was established. The soft X-ray images of citrus were acquired under the above parameters, and Gaussian filtering was used to denoise the citrus images. The image enhancement algorithm was used to enhance the contrast of the denoised images. The fixed threshold segmentation method and morphological algorithm were fused to remove the background area, separate the flesh area and the peel area of the citrus images. Finally, the area percentage method was used to calculate the ratio of citrus flesh area to citrus fruit area to discriminate the degree of citrus peel puffing; the grayscale features of citrus fruit area were extracted to obtain the citrus withered area, and the ratio of citrus withered area to citrus flesh area was calculated to discriminate the degree of citrus granulation. Qingjiang Ponkan were taken as the experimental object, and the results showed that the overall recognition rate of the homemade soft X-ray imaging device were 96.2% and 86.9% for the peel puffing and granulation of Qingjiang Ponkan, respectively. The method proposed in this study may achieve nondestructive detection of peel puffing and granulation inside citrus.

    Reference | Related Articles | Metrics | Comments0
    Path Following Model Predictive Control of Four Wheel Independent Drive High Ground Clearance Sprayer
    WANG Zijie, LIU Guohai, ZHANG Duo, SHEN Yue, YAO Zhen, ZHANG He
    Smart Agriculture    2021, 3 (3): 82-93.   DOI: 10.12133/j.smartag.2021.3.3.202105-SA006
    Abstract549)   HTML27)    PDF(pc) (2159KB)(598)       Save

    In order to solve the problems of low transmission efficiency, high carbon emissions, environmental pollution, low intelligence, and poor flexibility in traditional fuel-driven and front-wheel steering high ground clearance sprayers, a new type of high ground clearance four-wheel independent drive (4WID) sprayer which was suitable for the unmanned driving was proposed in this research. The sprayer adopted the hybrid power of fuel and battery and was steered by the 4WID driving mode of the front and rear double steering axles. For this reason, the turning radius of the proposed 4WID sprayer was small, and the running track of the front and rear wheels were uniform in height, which reduced the phenomenon of seedling crushing during field plant protection operations. Considering the slippage and sinking of the driving wheel in the extremely complex operating environment of the paddy field, based on the linear time-varying kinematics model (LTV) of the sprayer, a layered path tracking control considering the slippage of the driving wheel was constructed. The upper model predictive controller (MPC) obtained the steering angle and movement speed of the sprayer according to the expected path and the current position of the vehicle to realize path tracking. The lower layer used fuzzy control and integral separation PID control to construct a driving wheel slip controller, so as to achieve effective control of path tracking, speed, and driving wheel slip, which improved the stability and path tracking accuracy of the sprayer in a complex operating environment. The co-simulation results of Adams and Matlab showed that under complex working conditions, the slip rate of the driving wheel of the sprayer was controlled within ±20%, so as to prevent excessive slip of the driving wheel from having adverse effects on the speed and steering angle, which was conducive to the improvement of the stability of the sprayer. The sprayer could be tracked quickly and accurately the desired path, the path tracking in road conditions outside attached coefficients were 0.3 and 0.7 of the lateral deviation could be controlled within ±0.018 m. In stage C roughness 3D road conditions, the sprayer could adjust the steering angle of the front wheels in time to stabilize the body posture and the lateral deviation could be controlled within ±0.054 m. Compared with the controller that didn't consider the slip of the driving wheel, the stability and path tracking accuracy of the sprayer had been significantly improved.

    Reference | Related Articles | Metrics | Comments0
    Multiscale Feature Fusion Yak Face Recognition Algorithm Based on Transfer Learning
    CHEN Zhanqi, ZHANG Yu'an, WANG Wenzhi, LI Dan, HE Jie, SONG Rende
    Smart Agriculture    2022, 4 (2): 77-85.   DOI: 10.12133/j.smartag.SA202201001
    Abstract546)   HTML73)    PDF(pc) (1841KB)(570)       Save

    Identifying of yak is indispensable for individual documentation, behavior monitoring, precise feeding, disease prevention and control, food traceability, and individualized breeding. Aiming at the application requirements of animal individual identification technology in intelligent informatization animal breeding platforms, a yak face recognition algorithm based on transfer learning and multiscale feature fusion, i.e., transfer learning-multiscale feature fusion-VGG(T-M-VGG) was proposed. The sample data set of yak facial images was produced by a camera named GoPro HERO8 BLACK. Then, a part of dataset was increased by the data enhancement ways that involved rotating, adjusting the brightness and adding noise to improve the robustness and accuracy of model. T-M-VGG, a kind of convolutional neural network based on pre-trained visual geometry group network and transfer learning was input with normalized dataset samples. The feature map of Block3, Block4 and Block5 were considered as F3, F4 and F5, respectively. What's more, F3 and F5 were taken by the structure that composed of three parallel dilated convolutions, the dilation rate were one, two and three, respectively, to dilate the receptive filed which was the map size of feature map. Further, the multiscale feature maps were fused by the improved feature pyramid which was in the shape of stacked hourglass structure. Finally, the fully connected layer was replaced by the global average pooling to classify and reduce a large number of parameters. To verify the effectiveness of the proposed model, a comparative experiment was conducted. The experimental results showed that recognition accuracy rate in 38,800 data sets of 194 yaks reached 96.01%, but the storage size was 70.75 MB. Twelve images representing different yak categories from dataset were chosen randomly for occlusion test. The origin images were masked with different shape of occlusions. The accuracy of identifying yak individuals was 83.33% in the occlusion test, which showed that the model had mainly learned facial features. The proposed algorithm could provide a reference for research of yak face recognition and would be the foundation for the establishment of smart management platform.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Development of China Feed Nutrition Big Data Analysis Platform
    XIONG Benhai, ZHAO Yiguang, LUO Qingyao, ZHENG Shanshan, GAO Huajie
    Smart Agriculture    2022, 4 (2): 110-120.   DOI: 10.12133/j.smartag.SA202205003
    Abstract524)   HTML41)    PDF(pc) (1590KB)(596)       Save

    The shortage of feed grain is continually worsening in China, which leads to the transformation of feed grain security into national food security. Therefore, comprehensively integrating the basic data resources of feed nutrition and improving the nutritional value of all available feed resources will be one of the key technical strategies to ensure national food security in China. In this study, based on the description specification and attribute data standard of 16 categories of Chinese feed raw materials, more than 500,000 pieces of data on the types, spatial distribution, chemical composition and nutritional value characteristics of existing feed resources, which were accumulated through previous projects from the sixth Five-Year Plan to the thirteenth Five-Year Plan period, were digitally collected, recorded, categorized and comprehensively analyzed. By using MySQL relational database technology and PHP program, a new generation of feed nutrition big data online platform (http://www.chinafeeddata.org.cn/) was developed and web data sharing service was provided as well. First of all, the online platform provided visual analysis of all warehousing data, which could realize the visual comparison of a single or multiple feed nutrients in various graphic forms such as scatter diagram, histogram, curve line and column chart. By using two-dimensional code technology, all feed nutrition attribute data and feed entity sample traceability data could be shared and downloaded remotely in real-time on mobile phones. Secondly, the online platform also incorporated various regression models for prediction of feed effective nutrient values using readily available feed chemical composition in the datasets, providing dynamic analysis for feed raw material nutrient variation. Finally, based on Geographic Information System technology, the online platform integrated the data of feed chemical composition and major mineral element concentrations with their geographical location information, which was able to provide the distribution query and comparative analysis of the geographic information map of the feed raw material nutrition data at both provincial and national level. Meanwhile, the online platform can also provide a download service of the various datasets, which brought convenience to the comprehensive application of existing feed nutrition data. This research also showed that expanding feed resource data and providing prediction and analysis models of feed effective nutrients could maximize the utilization of the existing feed nutrition data. After embedding online calculation modules of various feed formulation software, this platform would be able to provide a one-stop service and optimize the utilization of the feed nutrition data.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Autonomous Navigation and Automatic Target Spraying Robot for Orchards
    LIU Limin, HE Xiongkui, LIU Weihong, LIU Ziyan, HAN Hu, LI Yangfan
    Smart Agriculture    2022, 4 (3): 63-74.   DOI: 10.12133/j.smartag.SA202207008
    Abstract513)   HTML47)    PDF(pc) (1905KB)(855)       Save

    To realize the autonomous navigation and automatic target spraying of intelligent plant protect machinery in orchard, in this study, an autonomous navigation and automatic target spraying robot for orchards was developed. Firstly, a single 3D light detection and ranging (LiDAR) was used to collect fruit trees and other information around the robot. The region of interest (ROI) was determined using information on the fruit trees in the orchard (plant spacing, plant height, and row spacing), as well as the fundamental LiDAR parameters. Additionally, it must be ensured that LiDAR was used to detect the canopy information of a whole fruit tree in the ROI. Secondly, the point clouds within the ROI was two-dimension processing to obtain the fruit tree center of mass coordinates. The coordinate was the location of the fruit trees. Based on the location of the fruit trees, the row lines of fruit tree were obtained by random sample consensus (RANSAC) algorithm. The center line (navigation line) of the fruit tree row within ROI was obtained through the fruit tree row lines. The robot was controlled to drive along the center line by the angular velocity signal transmitted from the computer. Next, the ATRS's body speed and position were determined by encoders and the inertial measurement unit (IMU). And the collected fruit tree zoned canopy information was corrected by IMU. The presence or absence of fruit tree zoned canopy was judged by the logical algorithm designed. Finally, the nozzles were controlled to spray or not according to the presence or absence of corresponding zoned canopy. The conclusions were obtained. The maximum lateral deviation of the robot during autonomous navigation was 21.8 cm, and the maximum course deviation angle was 4.02°. Compared with traditional spraying, the automatic target spraying designed in this study reduced pesticide volume, air drift and ground loss by 20.06%, 38.68% and 51.40%, respectively. There was no significant difference between the automatic target spraying and the traditional spraying in terms of the percentage of air drift. In terms of the percentage of ground loss, automatic target spraying had 43% at the bottom of the test fruit trees and 29% and 28% at the middle of the test fruit trees and the left and right neighboring fruit trees. But in traditional spraying, the percentage of ground loss was, in that sequence, 25%, 38%, and 37%. The robot developted can realize autonomous navigation while ensuring the spraying effect, reducing the pesticides volume and loss.

    Reference | Related Articles | Metrics | Comments0
    Review on Energy Efficiency Assessment and Carbon Emission Accounting of Food Cold Chain
    WANG Xiang, ZOU Jingui, LI You, SUN Yun, ZHANG Xiaoshuan
    Smart Agriculture    2023, 5 (1): 1-21.   DOI: 10.12133/j.smartag.SA202301007
    Abstract500)   HTML154)    PDF(pc) (1296KB)(916)       Save

    The global energy is increasingly tight, and the global temperature is gradually rising. Energy efficiency assessment and carbon emission accounting can provide theoretical tools and practical support for the formulation of energy conservation and emission reduction strategies for the food cold chain, and is also a prerequisite for the sustainable development of the food cold chain. In this paper, the relationship and differences between energy consumption and carbon emissions in the general food cold chain are first described, and the principle, advantages and disadvantages of three energy consumption conversion standards of solar emergy value, standard coal and equivalent electricity are discussed. Besides, the possibilities of applying these three energy consumption conversion standards to energy consumption analysis and energy efficiency evaluation of food cold chain are explored. Then, for a batch of fresh agricultural products, the energy consumption of six links of the food cold chain, including the first transportation, the manufacturer, the second transportation, the distribution center, the third transportation, and the retailer, are systematically and comprehensively analyzed from the product level, and the comprehensive energy consumption level of the food cold chain are obtained. On this basis, ten energy efficiency indicators from five aspects of macro energy efficiency are proposed, including micro energy efficiency, energy economy, environmental energy efficiency and comprehensive energy efficiency, and constructs the energy efficiency evaluation index system of food cold chain. At the same time, other energy efficiency evaluation indicators and methods are also summarized. In addition, the standard of carbon emission conversion of food cold chain, namely carbon dioxide equivalent is introduce, the boundary of carbon emission accounting is determined, and the carbon emission factors of China's electricity is mainly discussed. Furthermore, the origin, principle, advantages and disadvantages of the emission factor method, the life cycle assessment method, the input-output analysis method and the hybrid life cycle assessment method, and the basic process of life cycle assessment method in the calculation of food cold chain carbon footprint are also reviewed. In order to improve the energy efficiency level of the food cold chain and reduce the carbon emissions of each link of the food cold chain, energy conservation and emission reduction methods for food cold chain are proposed from five aspects: refrigerant, distribution path, energy, phase change cool storage technology and digital twin technology. Finally, the energy efficiency assessment and carbon emission accounting of the food cold chain are briefly prospected in order to provide reference for promoting the sustainable development of China's food cold chain.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Detection of Pear Inflorescence Based on Improved Ghost-YOLOv5s-BiFPN Algorithm
    XIA Ye, LEI Xiaohui, QI Yannan, XU Tao, YUAN Quanchun, PAN Jian, JIANG Saike, LYU Xiaolan
    Smart Agriculture    2022, 4 (3): 108-119.   DOI: 10.12133/j.smartag.SA202207006
    Abstract493)   HTML68)    PDF(pc) (2214KB)(2045)       Save

    Mechanized and intelligent flower thinning is a high-speed flower thinning method nowadays. The classification and detection of flowers and flower buds are the basic requirements to ensure the normal operation of the flower thinning machine. Aiming at the problems of pear inflorescence detection and classification in the current intelligent production of pear orchards, a Y-shaped shed pear orchard inflorescence recognition algorithm Ghost-YOLOv5s-BiFPN based on improved YOLOv5s was proposed in this research. The detection model was obtained by labeling and expanding the pear tree bud and flower images collected in the field and sending them to the algorithm for training. The Ghost-YOLOv5s-BiFPN algorithm used the weighted bidirectional feature pyramid network to replace the original path aggregation network structure, and effectively fuse the features of different sizes. At the same time, ghost module was used to replace the traditional convolution, so as to reduce the amount of model parameters and improve the operation efficiency of the equipment without reducing the accuracy. The field experiment results showed that the detection accuracy of the Ghost-YOLOv5s-BiFPN algorithm for the bud and flower in the pear inflorescence were 93.21% and 89.43%, respectively, with an average accuracy of 91.32%, and the detection time of a single image was 29 ms. Compared with the original YOLOv5s algorithm, the detection accuracy was improved by 4.18%, and the detection time and model parameters were reduced by 9 ms and 46.63% respectively. Compared with the original YOLOV5s network, the mAP and recall rate were improved by 4.2% and 2.7%, respectively; the number of parameters, model size and floating point operations were reduced by 46.6%, 44.4% and 47.5% respectively, and the average detection time was shortened by 9 ms. With Ghost convolution and BIFPN adding model, the detection accuracy has been improved to a certain extent, and the model has been greatly lightweight, effectively improving the detect efficiency. From the thermodynamic diagram results, it can be seen that BIFPN structure effectively enhances the representation ability of features, making the model more effective in focusing on the corresponding features of the target. The results showed that the algorithm can meet the requirements of accurate identification and classification of pear buds and flowers, and provide technical support for the follow-up pear garden to achieve intelligent flower thinning.

    Reference | Related Articles | Metrics | Comments0
    Digital Twin for Agricultural Machinery: From Concept to Application
    GUO Dafang, DU Yuefeng, WU Xiuheng, HOU Siyu, LI Xiaoyu, ZHANG Yan'an, CHEN Du
    Smart Agriculture    2023, 5 (2): 149-160.   DOI: 10.12133/j.smartag.SA202305007
    Abstract490)   HTML131)    PDF(pc) (2531KB)(518)       Save

    Significance Agricultural machinery serves as the fundamental support for implementing advanced agricultural production concepts. The key challenge for the future development of smart agriculture lies in how to enhance the design, manufacturing, operation, and maintenance of these machines to fully leverage their capabilities. To address this, the concept of the digital twin has emerged as an innovative approach that integrates various information technologies and facilitates the integration of virtual and real-world interactions. By providing a deeper understanding of agricultural machinery and its operational processes, the digital twin offers solutions to the complexity encountered throughout the entire lifecycle, from design to recycling. Consequently, it contributes to an all-encompassing enhancement of the quality of agricultural machinery operations, enabling them to better meet the demands of agricultural production. Nevertheless, despite its significant potential, the adoption of the digital twin for agricultural machinery is still at an early stage, lacking the necessary theoretical guidance and methodological frameworks to inform its practical implementation. Progress Drawing upon the successful experiences of the author's team in the digital twin for agricultural machinery, this paper presents an overview of the research progress made in digital twin. It covers three main areas: The digital twin in a general sense, the digital twin in agriculture, and the digital twin for agricultural machinery. The digital twin is conceptualized as an abstract notion that combines model-based system engineering and cyber-physical systems, facilitating the integration of virtual and real-world environments. This paper elucidates the relevant concepts and implications of digital twin in the context of agricultural machinery. It points out that the digital twin for agricultural machinery aims to leverage advanced information technology to create virtual models that accurately describe agricultural machinery and its operational processes. These virtual models act as a carrier, driven by data, to facilitate interaction and integration between physical agricultural machinery and their digital counterparts, consequently yielding enhanced value. Additionally, it proposes a comprehensive framework comprising five key components: Physical entities, virtual models, data and connectivity, system services, and business applications. Each component's functions operational mechanism, and organizational structure are elucidated. The development of the digital twin for agricultural machinery is still in its conceptual phase, and it will require substantial time and effort to gradually enhance its capabilities. In order to advance further research and application of the digital twin in this domain, this paper integrates relevant theories and practical experiences to propose an implementation plan for the digital twin for agricultural machinery. The macroscopic development process encompasses three stages: Theoretical exploration, practical application, and summarization. The specific implementation process entails four key steps: Intelligent upgrading of agricultural machinery, establishment of information exchange channels, construction of virtual models, and development of digital twin business applications. The implementation of digital twin for agricultural machinery comprises four stages: Pre-research, planning, implementation, and evaluation. The digital twin serves as a crucial link and bridge between agricultural machinery and the smart agriculture. It not only facilitates the design and manufacturing of agricultural machinery, aligning them with the realities of agricultural production and supporting the advancement of advanced manufacturing capabilities, but also enhances the operation, maintenance, and management of agricultural production to better meet practical requirements. This, in turn, expedites the practical implementation of smart agriculture. To fully showcase the value of the digital twin for agricultural machinery, this paper addresses the existing challenges in the design, manufacturing, operation, and management of agricultural machinery. It expounds the methods by which the digital twin can address these challenges and provides a technical roadmap for empowering the design, manufacturing, operation, and management of agricultural machinery through the use of the digital twin. In tackling the critical issue of leveraging the digital twin to enhance the operational quality of agricultural machinery, this paper presents two research cases focusing on high-powered tractors and large combine harvesters. These cases validate the feasibility of the digital twin in improving the quality of plowing operations for high-powered tractors and the quality of grain harvesting for large combine harvesters. Conclusions and Prospects This paper serves as a reference for the development of research on digital twin for agricultural machinery, laying a theoretical foundation for empowering smart agriculture and intelligent equipment with the digital twin. The digital twin provides a new approach for the transformation and upgrade of agricultural machinery, offering a new path for enhancing the level of agricultural mechanization and presenting new ideas for realizing smart agriculture. However, existing digital twin for agricultural machinery is still in its early stages, and there are a series of issues that need to be explored. It is necessary to involve more professionals from relevant fields to advance the research in this area.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Smart Agriculture    2021, 3 (2): 0-1.  
    Abstract477)            Save
    Related Articles | Metrics | Comments0
    Smart Agriculture    2021, 3 (4): 123-125.   DOI: 10.12133/j.smartag.2021.3.4.199009-SA007
    Abstract477)   HTML86)    PDF(pc) (321KB)(256)       Save
    Reference | Related Articles | Metrics | Comments0
    Design and Key Technologies of Big Data Platform for Commercial Beef Cattle Breeding
    MA Weihong, LI Jiawei, WANG Zhiquan, GAO Ronghua, DING Luyu, YU Qinyang, YU Ligen, LAI Chengrong, LI Qifeng
    Smart Agriculture    2022, 4 (2): 99-109.   DOI: 10.12133/j.smartag.SA202203005
    Abstract476)   HTML58)    PDF(pc) (1993KB)(744)       Save

    Focusing on the low level of management and informatization and intelligence of the beef cattle industry in China, a big data platform for commercial beef cattle breeding, referring to the experience of international advanced beef cattle breeding countries, was proposed in this research. The functions of the platform includes integrating germplasm resources of beef cattle, automatic collecting of key beef cattle breeding traits, full-service support for the beef cattle breeding process, formation of big data analysis and decision-making system for beef cattle germplasm resources, and joint breeding innovation model. Aiming at the backward storage and sharing methods of beef cattle breeding data and incomplete information records in China, an information resource integration platform and an information database for beef cattle germplasm were established. Due to the vagueness and subjectivity of the breeding performance evaluation standard, a scientific online evaluation technology of beef cattle breeding traits and a non-contact automatic acquisition and intelligent calculation method were proposed. Considering the lack of scientific and systematic breeding planning and guidance for farmers in China, a full-service support system for beef cattle breeding and nanny-style breeding guidance during beef cattle breeding was developed. And an interactive progressive decision-making method for beef cattle breeding to solve the lack of data accumulation of beef cattle germplasm was proposed. The main body of breeding and farming enterprises was not closely integrated, according to that, the innovative breeding model of regional integration was explored. The idea of commercial beef cattle breeding big data software platform and the technological and model innovation content were also introduced. The technology innovations included the deep mining of germplasm resources data and improved breed management pedigree, the automatic acquisition and evaluation technology of non-contact breeding traits, the fusion of multi-source heterogeneous information to provide intelligent decision support. The future goal is to form a sustainable information solution for China's beef cattle breeding industry and improve the overall level of China's beef cattle breeding industry.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    A Lightweight Fruit Load Estimation Model for Edge Computing Equipment
    XIA Xue, CHAI Xiujuan, ZHANG Ning, ZHOU Shuo, SUN Qixin, SUN Tan
    Smart Agriculture    2023, 5 (2): 1-12.   DOI: 10.12133/j.smartag.SA202305004
    Abstract476)   HTML143)    PDF(pc) (2277KB)(606)       Save

    [Objective] The fruit load estimation of fruit tree is essential for horticulture management. Traditional estimation method by manual sampling is not only labor-intensive and time-consuming but also prone to errors. Most existing models can not apply to edge computing equipment with limited computing resources because of their high model complexity. This study aims to develop a lightweight model for edge computing equipment to estimate fruit load automatically in the orchard. [Methods] The experimental data were captured using the smartphone in the citrus orchard in Jiangnan district, Nanning city, Guangxi province. In the dataset, 30 videos were randomly selected for model training and other 10 for testing. The general idea of the proposed algorithm was divided into two parts: Detecting fruits and extracting ReID features of fruits in each image from the video, then tracking fruit and estimating the fruit load. Specifically, the CSPDarknet53 network was used as the backbone of the model to achieve feature extraction as it consumes less hardware computing resources, which was suitable for edge computing equipment. The path aggregation feature pyramid network PAFPN was introduced as the neck part for the feature fusion via the jump connection between the low-level and high-level features. The fused features from the PAFPN were fed into two parallel branches. One was the fruit detection branch and another was the identity embedding branch. The fruit detection branch consisted of three prediction heads, each of which performed 3×3 convolution and 1×1 convolution on the feature map output by the PAFPN to predict the fruit's keypoint heat map, local offset and bounding box size, respectively. The identity embedding branch distinguished between different fruit identity features. In the fruit tracking stage, the byte mechanism from the ByteTrack algorithm was introduced to improve the data association of the FairMOT method, enhancing the performance of fruit load estimation in the video. The Byte algorithm considered both high-score and low-score detection boxes to associate the fruit motion trajectory, then matches the identity features' similarity of fruits between frames. The number of fruit IDs whose tracking duration longer than five frames was counted as the amount of citrus fruit in the video. [Results and Discussions] All experiments were conducted on edge computing equipment. The fruit detection experiment was conducted under the same test dataset containing 211 citrus tree images. The experimental results showed that applying CSPDarkNet53+PAFPN structure in the proposed model achieved a precision of 83.6%, recall of 89.2% and F1 score of 86.3%, respectively, which were superior to the same indexes of FairMOT (ResNet34) model, FairMOT (HRNet18) model and Faster RCNN model. The CSPDarkNet53+PAFPN structure adopted in the proposed model could better detect the fruits in the images, laying a foundation for estimating the amount of citrus fruit on trees. The model complexity experimental results showed that the number of parameters, FLOPs (Floating Point Operations) and size of the proposed model were 5.01 M, 36.44 G and 70.2 MB, respectively. The number of parameters for the proposed model was 20.19% of FairMOT (ResNet34) model's and 41.51% of FairMOT (HRNet18) model's. The FLOPs for the proposed model was 78.31% less than FairMOT (ResNet34) model's and 87.63% less than FairMOT (HRNet18) model's. The model size for the proposed model was 23.96% of FairMOT (ResNet34) model's and 45.00% of FairMOT (HRNet18) model's. Compared with the Faster RCNN, the model built in this study showed advantages in the number of parameters, FLOPs and model size. The low complexity proved that the proposed model was more friendly to edge computing equipment. Compared with the lightweight backbone network EfficientNet-Lite, the CSPDarkNet53 applied in the proposed model's backbone performed better fruit detection and model complexity. For fruit load estimation, the improved tracking strategy that integrated the Byte algorithm into the FairMOT positively boosted the estimation accuracy of fruit load. The experimental results on the test videos showed that the AEP (Average Estimating Precision) and FPS (Frames Per Second) of the proposed model reached 91.61% and 14.76 f/s, which indicated that the proposed model could maintain high estimation accuracy while the FPS was 2.4 times and 4.7 times of the comparison models, respectively. The RMSE (Root Mean Square Error) of the proposed model was 4.1713, which was 47.61% less than FairMOT (ResNet34) model's and 22.94% less than FairMOT (HRNet18) model's. The R2 of the determination coefficient between the algorithm-measured value and the manual counted value was 0.9858, which was superior to other comparison models. The proposed model revealed better performance in estimating fruit load and lower model complexity than other comparatives. [Conclusions] The experimental results proved the validity of the proposed model for fruit load estimation on edge computing equipment. This research could provide technical references for the automatic monitoring and analysis of orchard productivity. Future research will continue to enrich the data resources, further improve the model's performance, and explore more efficient methods to serve more fruit tree varieties.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Construction and Application of A Novel Abscisic Acid Electrochemical Immunosensor Based on Carboxylated Graphene-Sodium Alginate Nanocomposite
    DONG Hongtu, ZHOU Simeng, WANG Qingtao, WANG Cheng, LUO Bin, LI Aixue
    Smart Agriculture    2022, 4 (1): 110-120.   DOI: 10.12133/j.smartag.SA202202007
    Abstract474)   HTML34)    PDF(pc) (1757KB)(436)       Save

    Abscisic acid (ABA) is an important plant hormone, which can control seed and bud dormancy, organ size control, senescence and death, and participate in both biological and abiotic stress, inhibit plant growth, and participate in plant disease resistance. In order to determine the content of ABA in plants quickly and accurately, a new type of ABA immunosensor was developed. To improve the detection performance of the sensor, the detection performance of the sensor was increased by modifying GR-COOH and SA on the electrode surface. The concentration of GR-COOH, SA, and ABA-Antibody were optimized, the optimal conditions for the three materials were 1.5 mg/ml, 1.25 mg/ml and 0.5 mg/ml. The immunosensor was constructed based on the electrode impedance changes (△Z )due to the binding reaction of ABA antibody and antigen. It was found that the sensor showed linear relationship with ABA in the response range of 10 pmol/L~1 μmol/L, R2 was 0.99927, and the detection limit was about 10 pmol/L. The sensor also had good selectivity and stability. Using the electrochemical immunosensor, the content of ABA in navel orange leaf that have been successfully inoculated with citrus Huanglongbing by PCR was determined, and healthy plants were used as control. The test results showed that the impedance changes(△Z ) of healthy leaves and diseased leaves were 72 and 823, respectively, which indicated that the level of ABA in the infected plants increased significantly. The sensor provides a tool for the detection of plant hormone levels under disease stress. The results showed that the content of ABA increased in the leaves of navel orange infected by citrus Huanglongbing, which indicated that ABA played an important role in plant disease resistance. Furthermore, the changes of gene expression of key enzymes CitZEP in ABA synthesis pathway were studied, The results showed that the expression of CitZEP increased in plants infected with Huanglongbing disease, and the results were consistent with the detection results of the sensor, which indicated that the sensor had good practicability.

    Reference | Related Articles | Metrics | Comments0
    Comparative Study of the Regulation Effects of Artificial Intelligence-Assisted Planting Strategies on Strawberry Production in Greenhouse
    GENG Wenxuan, ZHAO Junye, RUAN Jiwei, HOU Yuehui
    Smart Agriculture    2022, 4 (2): 183-193.   DOI: 10.12133/j.smartag.SA202203006
    Abstract470)   HTML81)    PDF(pc) (869KB)(555)       Save

    Artificial intelligence (AI) assisted planting can improve in the precise management of protected horticultural crops while also alleviating the increasingly prevalent problem of labor shortage. As a typical representative of labor-intensive industries, the strawberry industry has a growing need for intelligent technology. To assess the regulatory effects of various AI strategies and key technologies on strawberry production in greenhouse, as well as provide valuable references for the innovation and industrial application of AI in horticultural crops, four AI planting strategies were evaluated. Four 96 m2 modern greenhouses were used for planting strawberry plants. Each greenhouse was equipped with standard sensors and actuators, and growers used artificial intelligence algorithms to remotely control the greenhouse climate and crop growth. The regulatory effects of four different AI planting strategies on strawberry growth, fruit yield and qualitywere compared and analyzed. And human-operated cultivation was taken as a reference to analyze the characteristics, existing problems and shortages. Each AI planting strategy simulated and forecast the greenhouse environment and crop growth by constructing models. AI-1 implemented greenhouse management decisions primarily through the knowledge graph method, whereas AI-2 transferred the intelligent planting model of Dutch greenhouse tomato planting to strawberry planting. AI-3 and AI-4 created growth and development models for strawberries based on World Food Studies (WOFOST) and Product of Thermal Effectiveness and Photosynthesis Active Radiation (TEP), respectively. The results showed that all AI supported strategy outperformed a human-operated greenhouse that served as reference. In comparison to the human-operated cultivation group, the average yield and output value of the AI planting strategy group increased 1.66 and 1.82 times, respectively, while the highest Return on Investment increased 1.27 times. AI can effectively improve the accuracy of strawberry planting management and regulation, reduce water, fertilizer, labor input, and obtain higher returns under greenhouse production conditions equipped with relatively complete intelligent equipment and control components, all with the goal of high yield and quality. Key technologies such as knowledge graphs, deep learning, visual recognition, crop models, and crop growth simulators all played a unique role in strawberry AI planting. The average yield and Return on Investment (ROI) of the AI groups were greater than those of the human-operated cultivation group. More specifically, the regulation of AI-1 on crop development and production was relatively stable, integrating expert experience, crop data, and environmental data with knowledge graphs to create a standardized strawberry planting knowledge structure as well as intelligent planting decision-making approach. In this study, AI-1 achieved the highest yield, the heaviest average fruit weight, and the highest ROI. This group's AI-assisted strategy optimized the regulatory effect of growth, development, and yield formation of strawberry crops in consideration of high yield and quality. However, there are still issues to be resolved, such as the difficulty of simulating the disturbance caused by manual management and collecting crop ontology data.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Construction of Milk Purchase Classification Model Based on Shuffled Frog Leaping Algorithm and Support Vector Machine
    XIAO Shijie, WANG Qiaohua, LI Chunfang, ZHAO Limei, LIU Xinya, LU Shiyu, ZHANG Shujun
    Smart Agriculture    2021, 3 (4): 77-85.   DOI: 10.12133/j.smartag.2021.3.4.202107-SA003
    Abstract468)   HTML12)    PDF(pc) (1063KB)(385)       Save

    Protein, fat and somatic cells are three important reference indicators in milk purchase, which determine the quality and price of milk. The traditional chemical analysis methods of these indexes are time-consuming and pollute the environment, while the mid-infrared spectrum has the advantages of fast, non-destructive and simple operation. In order to realize the rapid classification of milk quality and improve the production efficiency of dairy enterprises, 3216 Holstein milk samples were chosen as the research objects and mid-infrared spectroscopy technology was applied to realize the detection and classification of 4 different quality milks during the purchase process. The spectrum was preprocessed by using the first derivative and the first difference, and combined with the algorithm competitive adaptive reweighted sampling (CARS) and the shuffled frog leaping algorithm (SFLA), the effective characteristic variables that could represent different milks were selected, and the SVM model was established. Among them, the penalty parameter c and the kernel function parameter g which were the key parameters of the SVM model were optimized by using the grid search method (GS), genetic algorithm (GA) and particle swarm algorithm (PSO). The training time of GS, GA and PSO algorithms were compared, the results showed that the training time of GS was much longer than that of GA and PSO algorithms.The SFLA algorithm was generally better than the CARS algorithm, and the PSO optimized the SVM model the best. After the first-order difference preprocessing, the PSO-SVM established by using the SFLA algorithm to filter the characteristic variables, the accuracy of the training set, the accuracy of the test set and the AUC were 97.8%, 95.6% and 0.96489, respectively. This model has a high accuracy rate and has practical application value in the milk industry.

    Reference | Related Articles | Metrics | Comments0
    Multi-Objective Vegetable Transportation and Distribution Path Optimization with Time Windows
    WANG Fang, TENG Guifa, YAO Jingfa
    Smart Agriculture    2021, 3 (3): 152-161.   DOI: 10.12133/j.smartag.2021.3.3.202109-SA010
    Abstract426)   HTML33)    PDF(pc) (1125KB)(496)       Save

    There are higher requirements for the timeliness of vegetable transportation and distribution. In order to solve the problems of long transportation time, high total transportation cost and short preservation time of vegetables during transportation, considering the constraints such as vehicle load and time window, this study proposed a genetic simulated annealing algorithm (GA-SA) for multi-objective vegetable distribution path optimization with time windows. That was, the simulated annealing algorithm (SA) adaptive (Metropolis) acceptance criterion was introduced into the operation process of genetic algorithm (GA). The basic idea was: First, the original population was selected, crossed and mutated by genetic algorithm to form a new generation of path population. At this time, by introducing metropolis acceptance criterion, and then, after modifying the sub situation of the new generation path population and selecting cross mutation, a new target path population was obtained. The improved algorithm retained the excellent individual, and the convergence speed, jumped out of the local optimal solution found based on genetic algorithm, and then found the global optimal solution. Then, the multi-objective of returning all vehicles to the distribution center after distribution was the least time-consuming, the lowest cost and the least use of vehicles was achieved, and the optimal path of vegetable transportation was obtained. Taking Baoding city in Hebei province as the distribution center and some towns under the jurisdiction of Baoding city as the distribution points, the experiment of vegetable transportation path optimization was designed. The experiments of genetic algorithm, simulated annealing algorithm and genetic simulated annealing algorithm were carried out, respectively. The comparative analysis was carried out from the aspects of convergence speed, total distance, total time, vehicles and total cost. The experimental results showed that, compared with the genetic algorithm and simulated annealing algorithm, GA-SA could effectively accelerate its convergence speed. The total cost of the optimized distribution route reduced by about 23.7% and 4% respectively, the total distance reduced by 22.6% and 3% respectively, the time consumption reduced by 26.2 and 2.6 hours respectively, and 2 and 1 vehicles were used less respectively. This study could also provide reference for the research of cold fresh food and other transportation path optimization.

    Reference | Related Articles | Metrics | Comments0
    Research Progress and Challenges of Oil Crop Yield Monitoring by Remote Sensing
    MA Yujing, WU Shangrong, YANG Peng, CAO Hong, TAN Jieyang, ZHAO Rongkun
    Smart Agriculture    2023, 5 (3): 1-16.   DOI: 10.12133/j.smartag.SA202303002
    Abstract421)   HTML134)    PDF(pc) (837KB)(486)       Save

    [Significance] Oil crops play a significant role in the food supply, as well as the important source of edible vegetable oils and plant proteins. Real-time, dynamic and large-scale monitoring of oil crop growth is essential in guiding agricultural production, stabilizing markets, and maintaining health. Previous studies have made a considerable progress in the yield simulation of staple crops in regional scale based on remote sensing methods, but the yield simulation of oil crops in regional scale is still poor as its complexity of the plant traits and structural characteristics. Therefore, it is urgently needed to study regional oil crop yield estimation based on remote sensing technology. [Progress] This paper summarized the content of remote sensing technology in oil crop monitoring from three aspects: backgrounds, progressions, opportunities and challenges. Firstly, significances and advantages of using remote sensing technology to estimate the of oil crops have been expounded. It is pointed out that both parameter inversion and crop area monitoring were the vital components of yield estimation. Secondly, the current situation of oil crop monitoring was summarized based on remote sensing technology from three aspects of remote sensing parameter inversion, crop area monitoring and yield estimation. For parameter inversion, it is specified that optical remote sensors were used more than other sensors in oil crops inversion in previous studies. Then, advantages and disadvantages of the empirical model and physical model inversion methods were analyzed. In addition, advantages and disadvantages of optical and microwave data were further illustrated from the aspect of oil crops structure and traits characteristics. At last, optimal choice on the data and methods were given in oil crop parameter inversion. For crop area monitoring, this paper mainly elaborated from two parts of optical and microwave remote sensing data. Combined with the structure of oil crops and the characteristics of planting areas, the researches on area monitoring of oil crops based on different types of remote sensing data sources were reviewed, including the advantages and limitations of different data sources in area monitoring. Then, two yield estimation methods were introduced: remote sensing yield estimation and data assimilation yield estimation. The phenological period of oil crop yield estimation, remote sensing data source and modeling method were summarized. Next, data assimilation technology was introduced, and it was proposed that data assimilation technology has great potential in oil crop yield estimation, and the assimilation research of oil crops was expounded from the aspects of assimilation method and grid selection. All of them indicate that data assimilation technology could improve the accuracy of regional yield estimation of oil crops. Thirdly, this paper pointed out the opportunities of remote sensing technology in oil crop monitoring, put forward some problems and challenges in crop feature selection, spatial scale determination and remote sensing data source selection of oil crop yield, and forecasted the development trend of oil crop yield estimation research in the future. [Conclusions and Prospects] The paper puts forward the following suggestions for the three aspects: (1) Regarding crop feature selection, when estimating yields for oil crops such as rapeseed and soybeans, which have active photosynthesis in siliques or pods, relying solely on canopy leaf area index (LAI) as the assimilation state variable for crop yield estimation may result in significant underestimation of yields, thereby impacting the accuracy of regional crop yield simulation. Therefore, it is necessary to consider the crop plant characteristics and the agronomic mechanism of yield formation through siliques or pods when estimating yields for oil crops. (2) In determining the spatial scale, some oil crops are distributed in hilly and mountainous areas with mixed land cover. Using regularized yield simulation grids may result in the confusion of numerous background objects, introducing additional errors and affecting the assimilation accuracy of yield estimation. This poses a challenge to yield estimation research. Thus, it is necessary to choose appropriate methods to divide irregular unit grids and determine the optimal scale for yield estimation, thereby improving the accuracy of yield estimation. (3) In terms of remote sensing data selection, the monitoring of oil crops can be influenced by crop structure and meteorological conditions. Depending solely on spectral data monitoring may have a certain impact on yield estimation results. It is important to incorporate radar off-nadir remote sensing measurement techniques to perceive the response relationship between crop leaves and siliques or pods and remote sensing data parameters. This can bridge the gap between crop characteristics and remote sensing information for crop yield simulation. This paper can serve as a valuable reference and stimulus for further research on regional yield estimation and growth monitoring of oil crops. It supplements existing knowledge and provides insightful considerations for enhancing the accuracy and efficiency of oil crop production monitoring and management.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Detection Method for Dragon Fruit in Natural Environment Based on Improved YOLOX
    SHANG Fengnan, ZHOU Xuecheng, LIANG Yingkai, XIAO Mingwei, CHEN Qiao, LUO Chendi
    Smart Agriculture    2022, 4 (3): 120-131.   DOI: 10.12133/j.smartag.SA202207001
    Abstract417)   HTML51)    PDF(pc) (2267KB)(1191)       Save

    Dragon fruit detection in natural environment is the prerequisite for fruit harvesting robots to perform harvesting. In order to improve the harvesting efficiency, by improving YOLOX (You Only Look Once X) network, a target detection network with an attention module was proposed in this research. As the benchmark, YOLOX-Nano network was chose to facilitate deployment on embedded devices, and the convolutional block attention module (CBAM) was added to the backbone feature extraction network of YOLOX-Nano, which improved the robustness of the model to dragon fruit target detection to a certain extent. The correlation of features between different channels was learned by weight allocation coefficients of features of different scales, which were extracted for the backbone network. Moreover, the transmission of deep information of network structure was strengthened, which aimed at reducing the interference of dragon fruit recognition in the natural environment as well as improving the accuracy and speed of detection significantly. The performance evaluation and comparison test of the method were carried out. The results showed that, after training, the dragon fruit target detection network got an AP0.5 value of 98.9% in the test set, an AP0.5:0.95 value of 72.4% and F1 score was 0.99. Compared with other YOLO network models under the same experimental conditions, on the one hand, the improved YOLOX-Nano network model proposed in this research was more lightweight, on the other hand, the detection accuracy of this method surpassed that of YOLOv3, YOLOv4 and YOLOv5 respectively. The average detection accuracy of the improved YOLOX-Nano target detection network was the highest, reaching 98.9%, 26.2% higher than YOLOv3, 9.8% points higher than YOLOv4-Tiny, and 7.9% points higher than YOLOv5-S. Finally, real-time tests were performed on videos with different input resolutions. The improved YOLOX-Nano target detection network proposed in this research had an average detection time of 21.72 ms for a single image. In terms of the size of the network model was only 3.76 MB, which was convenient for deployment on embedded devices. In conclusion, not only did the improved YOLOX-Nano target detection network model accurately detect dragon fruit under different lighting and occlusion conditions, but the detection speed and detection accuracy showed in this research could able to meet the requirements of dragon fruit harvesting in natural environment requirements at the same time, which could provide some guidance for the design of the dragon fruit harvesting robot.

    Reference | Related Articles | Metrics | Comments0
    Gait Phase Recognition of Dairy Cows based on Gaussian Mixture Model and Hidden Markov Model
    ZHANG Kai, HAN Shuqing, CHENG Guodong, WU Saisai, LIU Jifang
    Smart Agriculture    2022, 4 (2): 53-63.   DOI: 10.12133/j.smartag.SA202204003
    Abstract409)   HTML27)    PDF(pc) (1428KB)(469)       Save

    The gait phase of dairy cows is an important indicator to reflect the severity of lameness. IThe accuracy of available gait segmentation methods was not enough for lameness detection. In this study, a gait phase recognition method based on Gaussian mixture model (GMM) and hidden Markov model (HMM) was proposed and tested. Firstly, wearable inertial sensors LPMS-B2 were used to collect the acceleration and angular velocity signals of cow hind limbs. In order to remove the noise of the system and restore the real dynamic data, Kalman filter was used for data preprocessing. The first-order difference of the angular velocity of the coronal axis was selected as the eigenvalue. Secondly, to analyze the long-term continuous recorded gait sequences of dairy cows, the processed data was clustered by GMM in the unsupervised way. The clustering results were taken as the input of the HMM, and the gait phase recognition of dairy cows was realized by decoding the observed data. Finally, the cow gait was segmented into 3 phases, including the stationary phase, standing phase and swing phase. At the same time, gait segmentation was achieved according to the standing phase and swing phase. The accuracy, recall rate and F1 of the stationary phase were 89.28%, 90.95% and 90.91%, respectively. The accuracy, recall rate and F1 of the standing phase recognition in continuous gait were 91.55%, 86.71% and 89.06%, respectively. The accuracy, recall rate and F1 of the swing phase recognition in continuous gait were 86.67%, 91.51% and 89.03%, respectively. The accuracy of cow gait segmentation was 91.67%, which was 4.23% and 1.1 % higher than that of the event-based peak detection method and dynamic time warping algorithm, respectively. The experimental results showed that the proposed method could overcome the influence of the cow's walking speed on gait phase recognition results, and recognize the gait phase accurately. This experiment provides a new method for the adaptive recognition of the cow gait phase in unconstrained environments. The degree of lameness of dairy cows can be judged by the gait features.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Status Quo of Waterfowl Intelligent Farming Research Review and Development Trend Analysis
    LIU Youfu, XIAO Deqin, ZHOU Jiaxin, BIAN Zhiyi, ZHAO Shengqiu, HUANG Yigui, WANG Wence
    Smart Agriculture    2023, 5 (1): 99-110.   DOI: 10.12133/j.smartag.SA202205007
    Abstract407)   HTML39)    PDF(pc) (2057KB)(657)       Save

    Waterfowl farming in China is developing rapidly in the direction of large-scale, standardization and intelligence. The research and application of intelligent farming equipment and information technology is the key to promote the healthy and sustainable development of waterfowl farming, which is important to improve the output efficiency of waterfowl farming, reduce the reliance on labor in the production process, fit the development concept of green and environmental protection and achieve high-quality transformational development. In this paper, the latest research and inventions of intelligent waterfowl equipment, waterfowl shed environment intelligent control technology and intelligent waterfowl feeding, drinking water, dosing and disinfection and automatic manure treatment equipment were introduced. At present, compared to pigs, chickens and cattle, the intelligent equipment of waterfowl are still relatively backward. Most waterfowl houses are equipped with chicken equipment directly, lacking improvements for waterfowl. Moreover, the linkage between the equipment is poor and not integrated with the breeding mode and shed structure of waterfowl, resulting in low utilization. Therefore, there is a need to develop and improve equipment for the physiological growth characteristics of waterfowl from the perspective of their breeding welfare. In addition, the latest research advances in the application of real-time production information collection and intelligent management technologies were present. The information collection technologies included visual imaging technology, sound capture systems, and wearable sensors were present. Since the researches of ducks and geese is few, the research of poultry field, which can provide a reference for the waterfowl were also summarized. The research of information perception and processing of waterfowl is currently in its initial stage. Information collection techniques need to be further tailored to the physiological growth characteristics of waterfowl, and better deep learning models need to be established. The waterfowl management platform, taking the intelligent management platform developed by South China Agricultural University as an example were also described. Finally, the intelligent application of the waterfowl industry was pointed out, and the future trends of intelligent farming with the development of mechanized and intelligent equipment for waterfowl in China to improve the recommendations were analyzed. The current waterfowl farming is in urgent need of intelligent equipment reform and upgrading of the industry for support. In the future, intelligent equipment for waterfowl, information perception methods and control platforms are in urgent to be developed. When upgrading the industry, it is necessary to develop a development strategy that fits the current waterfowl farming model in China.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Forecast and Analysis of Agricultural Products Logistics Demand Based on Informer Neural Network: Take the Central China Aera as An Example
    ZUO Min, HU Tianyu, DONG Wei, ZHANG Kexin, ZHANG Qingchuan
    Smart Agriculture    2023, 5 (1): 34-43.   DOI: 10.12133/j.smartag.SA202302001
    Abstract403)   HTML146)    PDF(pc) (1323KB)(857)       Save

    Ensuring the stability of agricultural products logistics is the key to ensuring people's livelihood. The forecast of agricultural products logistics demand is an important guarantee for rational planning of agricultural products logistics stability. However, the forecasting of agricultural products logistics demand is actually complicated, and it will be affected by various factors in the forecasting process. Therefore, in order to ensure the accuracy of forecasting the logistics demand of agricultural products, many influencing factors need to be considered. In this study, the logistics demand of agricultural products is taken as the research object, relevant indicators from 2017 to 2021 were selected as characteristic independent variables and a neural network model for forecasting the logistics demand of agricultural products was constructed by using Informer neural network. Taking Henan province, Hubei province and Hunan province in Central China as examples, the logistics demands of agricultural products in the three provinces were predicted. At the same time, long short-term memory network (LSTM) and Transformer neural network were used to forecast the demand of agricultural products logistics in three provinces of Central China, and the prediction results of the three models were compared. The results showed that the average percentage of prediction test error based on Informer neural network model constructed in this study was 3.39%, which was lower than that of LSTM and Transformer neural network models of 4.43% and 4.35%. The predicted value of Informer neural network model for three provinces was close to the actual value. The predicted value of Henan province in 2021 was 4185.33, the actual value was 4048.10, and the error was 3.389%. The predicted value of Hubei province in 2021 was 2503.64, the actual value was 2421.78, and the error was 3.380%. The predicted value of Hunan province in 2021 was 2933.31, the actual value was 2836.86, and the error was 3.340%. Therefore, it showed that the model can accurately predict the demand of agricultural products logistics in three provinces of Central China, and can provide a basis for rational planning and policy making of agricultural products logistics. Finally, the model and parameters were used to predict the logistics demand of agricultural products in Henan, Hunan, and Hubei provinces in 2023, and the predicted value of Henan province in 2023 was 4217.13; Hubei province was 2521.47, and Hunan province was 2974.65, respectively. The predicted values for the three provinces in 2023 are higher than the predicted values in 2021. Therefore, based on the logistics and transportation supporting facilities in 2021, it is necessary to ensure logistics and transportation efficiency and strengthen logistics and transportation capacity, so as to meet the growing logistics demand in Central China.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Identification and Counting of Silkworms in Factory Farm Using Improved Mask R-CNN Model
    HE Ruimin, ZHENG Kefeng, WEI Qinyang, ZHANG Xiaobin, ZHANG Jun, ZHU Yihang, ZHAO Yiying, GU Qing
    Smart Agriculture    2022, 4 (2): 163-173.   DOI: 10.12133/j.smartag.SA202201012
    Abstract398)   HTML29)    PDF(pc) (2357KB)(778)       Save

    Factory-like rearing of silkworm (Bombyx mori) using artificial diet for all instars is a brand-new rearing mode of silkworm. Accurate feeding is one of the core technologies to save cost and increase efficiency in factory silkworm rearing. Automatic identification and counting of silkworm play a key role to realize accurate feeding. In this study, a machine vision system was used to obtain digital images of silkworms during main instars, and an improved Mask R-CNN model was proposed to detect the silkworms and residual artificial diet. The original Mask R-CNN was improved using the noise data of annotations by adding a pixel reweighting strategy and a bounding box fine-tuning strategy to the model frame. A more robust model was trained to improve the detection and segmentation abilities of silkworm and residual feed. Three different data augmentation methods were used to expand the training dataset. The influences of silkworm instars, data augmentation, and the overlap between silkworms on the model performance were evaluated. Then the improved Mask R-CNN was used to detect silkworms and residual feed. The AP50 (Average Precision at IoU=0.5) of the model for silkworm detection and segmentation were 0.790 and 0.795, respectively, and the detection accuracy was 96.83%. The detection and segmentation AP50 of residual feed were 0.641 and 0.653, respectively, and the detection accuracy was 87.71%. The model was deployed on the NVIDIA Jetson AGX Xavier development board with an average detection time of 1.32 s and a maximum detection time of 2.05 s for a image. The computational speed of the improved Mask R-CNN can meet the requirement of real-time detection of the moving unit of the silkworm box on the production line. The model trained by the fifth instar data showed a better performance on test data than the fourth instar model. The brightness enhancement method had the greatest contribution to the model performance as compared to the other data augmentation methods. The overlap between silkworms also negatively affected the performance of the model. This study can provide a core algorithm for the research and development of the accurate feeding information system and feeding device for factory silkworm rearing, which can improve the utilization rate of artificial diet and improve the production and management level of factory silkworm rearing.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    The Key Issues and Evaluation Methods for Constructing Agricultural Pest and Disease Image Datasets: A Review
    GUAN Bolun, ZHANG Liping, ZHU Jingbo, LI Runmei, KONG Juanjuan, WANG Yan, DONG Wei
    Smart Agriculture    2023, 5 (3): 17-34.   DOI: 10.12133/j.smartag.SA202306012
    Abstract394)   HTML110)    PDF(pc) (1576KB)(660)       Save

    [Significance] The scientific dataset of agricultural pests and diseases is the foundation for monitoring and warning of agricultural pests and diseases. It is of great significance for the development of agricultural pest control, and is an important component of developing smart agriculture. The quality of the dataset affecting the effectiveness of image recognition algorithms, with the discovery of the importance of deep learning technology in intelligent monitoring of agricultural pests and diseases. The construction of high-quality agricultural pest and disease datasets is gradually attracting attention from scholars in this field. In the task of image recognition, on one hand, the recognition effect depends on the improvement strategy of the algorithm, and on the other hand, it depends on the quality of the dataset. The same recognition algorithm learns different features in different quality datasets, so its recognition performance also varies. In order to propose a dataset evaluation index to measure the quality of agricultural pest and disease datasets, this article analyzes the existing datasets and takes the challenges faced in constructing agricultural pest and disease image datasets as the starting point to review the construction of agricultural pest and disease datasets. [Progress] Firstly, disease and pest datasets are divided into two categories: private datasets and public datasets. Private datasets have the characteristics of high annotation quality, high image quality, and a large number of inter class samples that are not publicly available. Public datasets have the characteristics of multiple types, low image quality, and poor annotation quality. Secondly, the problems faced in the construction process of datasets are summarized, including imbalanced categories at the dataset level, difficulty in feature extraction at the dataset sample level, and difficulty in measuring the dataset size at the usage level. These include imbalanced inter class and intra class samples, selection bias, multi-scale targets, dense targets, uneven data distribution, uneven image quality, insufficient dataset size, and dataset availability. The main reasons for the problem are analyzed by two key aspects of image acquisition and annotation methods in dataset construction, and the improvement strategies and suggestions for the algorithm to address the above issues are summarized. The collection devices of the dataset can be divided into handheld devices, drone platforms, and fixed collection devices. The collection method of handheld devices is flexible and convenient, but it is inefficient and requires high photography skills. The drone platform acquisition method is suitable for data collection in contiguous areas, but the detailed features captured are not clear enough. The fixed device acquisition method has higher efficiency, but the shooting scene is often relatively fixed. The annotation of image data is divided into rectangular annotation and polygonal annotation. In image recognition and detection, rectangular annotation is generally used more frequently. It is difficult to label images that are difficult to separate the target and background. Improper annotation can lead to the introduction of more noise or incomplete algorithm feature extraction. In response to the problems in the above three aspects, the evaluation methods are summarized for data distribution consistency, dataset size, and image annotation quality at the end of the article. [Conclusions and Prospects] The future research and development suggestions for constructing high-quality agricultural pest and disease image datasets based are proposed on the actual needs of agricultural pest and disease image recognition:(1) Construct agricultural pest and disease datasets combined with practical usage scenarios. In order to enable the algorithm to extract richer target features, image data can be collected from multiple perspectives and environments to construct a dataset. According to actual needs, data categories can be scientifically and reasonably divided from the perspective of algorithm feature extraction, avoiding unreasonable inter class and intra class distances, and thus constructing a dataset that meets task requirements for classification and balanced feature distribution. (2) Balancing the relationship between datasets and algorithms. When improving algorithms, consider the more sufficient distribution of categories and features in the dataset, as well as the size of the dataset that matches the model, to improve algorithm accuracy, robustness, and practicality. It ensures that comparative experiments are conducted on algorithm improvement under the same evaluation standard dataset, and improved the pest and disease image recognition algorithm. Research the correlation between the scale of agricultural pest and disease image data and algorithm performance, study the relationship between data annotation methods and algorithms that are difficult to annotate pest and disease images, integrate recognition algorithms for fuzzy, dense, occluded targets, and propose evaluation indicators for agricultural pest and disease datasets. (3) Enhancing the use value of datasets. Datasets can not only be used for research on image recognition, but also for research on other business needs. The identification, collection, and annotation of target images is a challenging task in the construction process of pest and disease datasets. In the process of collecting image data, in addition to collecting images, attention can be paid to the collection of surrounding environmental information and host information. This method is used to construct a multimodal agricultural pest and disease dataset, fully leveraging the value of the dataset. In order to focus researchers on business innovation research, it is necessary to innovate the organizational form of data collection, develop a big data platform for agricultural diseases and pests, explore the correlation between multimodal data, improve the accessibility and convenience of data, and provide efficient services for application implementation and business innovation.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Real-Time Monitoring System for Rabbit House Environment Based on NB-IoT Network
    QIN Yingdong, JIA Wenshen
    Smart Agriculture    2023, 5 (1): 155-165.   DOI: 10.12133/j.smartag.SA202211008
    Abstract376)   HTML50)    PDF(pc) (1662KB)(801)       Save

    To meet the needs of environmental monitoring and regulation in rabbit houses, a real-time environmental monitoring system for rabbit houses was proposed based on narrow band Internet of Things (NB-IoT). The system overcomes the limitations of traditional wired networks, reduces network costs, circuit components, and expenses is low. An Arduino development board and the Quectel BC260Y-NB-IoT network module were used, along with the message queuing telemetry transport (MQTT) protocol for remote telemetry transmission, which enables network connectivity and communication with an IoT cloud platform. Multiple sensors, including SGP30, MQ137, and 5516 photoresistors, were integrated into the system to achieve real-time monitoring of various environmental parameters within the rabbit house, such as sound decibels, light intensity, humidity, temperature, and gas concentrations. The collected data was stored for further analysis and could be used to inform environmental regulation and monitoring in rabbit houses, both locally and in the cloud. Signal alerts based on circuit principles were triggered when thresholds were exceeded, creating an optimal living environment for the rabbits. The advantages of NB-IoT networks and other networks, such as Wi-Fi and LoRa were compared. The technology and process of building a system based on the three-layer architecture of the Internet of Things was introduced. The prices of circuit components were analyzed, and the total cost of the entire system was less than 400 RMB. The system underwent network and energy consumption tests, and the transmission stability, reliability, and energy consumption were reasonable and consistent across different time periods, locations, and network connection methods. An average of 0.57 transactions per second (TPS) was processed by the NB-IoT network using the MQTT communication protocol, and 34.2 messages per minute were sent and received with a fluctuation of 1 message. The monitored device was found to have an average voltage of approximately 12.5 V, a current of approximately 0.42 A, and an average power of 5.3 W after continuous monitoring using an electricity meter. No additional power consumption was observed during communication. The performance of various sensors was tested through a 24-hour indoor test, during which temperature and lighting conditions showed different variations corresponding to day and night cycles. The readings were stably and accurately captured by the environmental sensors, demonstrating their suitability for long-term monitoring purposes. This system is can provide equipment cost and network selection reference values for remote or large-scale livestock monitoring devices.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Evaluation and Countermeasures on the Development Level of Intelligent Cold Chain in China
    YANG Lin, YANG Bin, REN Qingshan, YANG Xinting, HAN Jiawei
    Smart Agriculture    2023, 5 (1): 22-33.   DOI: 10.12133/j.smartag.SA202302003
    Abstract365)   HTML133)    PDF(pc) (1380KB)(489)       Save

    The new generation of information technology has led to the rapid development of the intelligent level of the cold chain, and the precise control of the development level of the smart cold chain is the prerequisite foundation and guarantee to achieve the key breakthrough of the technical bottleneck and the strategic layout of the development direction. Based on this, an evaluation index system for China's intelligent cold chain development from the dimensions of supply capacity, storage capacity, transportation capacity, economic efficiency and informationization level was conducted. The entropy weight method combined with the technique for order preference by similarity to ideal solution (TOPSIS) was used to quantitatively evaluate the development of intelligent cold chain in 30 Chinese provinces and cities (excluding Tibet, Hong Kong, Macao and Taiwan) from 2017 to 2021. The quantitative evaluation of the level of intelligent cold chain development was conducted. The impact of the evaluation indicators on different provinces and cities was analysed by exploratory spatial data analyses (ESDA) and geographically weighted regression (GWR). The results showed that indicators such as economic development status, construction of supporting facilities and informationization level had greater weight and played a more important role in influencing the construction of intelligent cold chain. The overall level of intelligent cold chain development in China is divided into four levels, with most cities at the third and fourth levels. Beijing and the eastern coastal provinces and cities generally have a better level of intelligent cold chain development, while the southwest and northwest regions are developing slowly. In terms of overall development, the overall development of China's intelligent cold chain is relatively backward, with insufficient inter-regional synergy. The global spatial autocorrelation analysis shows that the variability in the development of China's intelligent cold chain logistics is gradually becoming greater. Through the local spatial autocorrelation analysis, it can be seen that there is a positive spatial correlation between the provinces and cities in East China, and negative spatiality in North China and South China. After geographically weighted regression analysis, it can be seen that the evaluation indicators have significant spatial and temporal heterogeneity in 2017, with the degree of influence changing with spatial location and time, and the spatial and temporal heterogeneity of the evaluation indicators is not significant in 2021. In order to improve the overall development level of China's intelligent cold chain, corresponding development countermeasures are proposed to strengthen the construction of supporting facilities and promote the transformation and upgrading of information technology. This study can provide a scientific basis for the global planning, strategic layout and overall promotion of China's intelligent cold chain.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Apple Phenological Period Identification in Natural Environment Based on Improved ResNet50 Model
    LIU Yongbo, GAO Wenbo, HE Peng, TANG Jiangyun, HU Liang
    Smart Agriculture    2023, 5 (2): 13-22.   DOI: 10.12133/j.smartag.SA202304009
    Abstract365)   HTML94)    PDF(pc) (2822KB)(677)       Save

    [Objective] Aiming at the problems of low accuracy and incomplete coverage of image recognition of phenological period of apple in natural environment by traditional methods, an improved ResNet50 model was proposed for phenological period recognition of apple. [Methods] With 8 kinds of phenological period images of Red Fuji apple in Sichuan plateau area as the research objects and 3 sets of spherical cameras built in apple orchard as acquisition equipment, the original data set of 9800 images of apple phenological period were obtained, labeled by fruit tree experts. Due to the different duration of each phenological period of apple, there were certain differences in the quantity of collection. In order to avoid the problem of decreasing model accuracy due to the quantity imbalance, data set was enhanced by random cropping, random rotation, horizontal flip and brightness adjustment, and the original data set was expanded to 32,000 images. It was divided into training set (25,600 images), verification set (3200 images) and test set (3200 images) in a ratio of 8:1:1. Based on the ResNet50 model, the SE (Squeeze and Excitation Network) channel attention mechanism and Adam optimizer were integrated. SE channel attention was introduced at the end of each residual module in the benchmark model to improve the model's feature extraction ability for plateau apple tree images. In order to achieve fast convergence of the model, the Adam optimizer was combined with the cosine annealing attenuation learning rate, and ImageNet was selected as the pre-training model to realize intelligent recognition of plateau Red Fuji apple phenological period under natural environment. A "Intelligent Monitoring and Production Management Platform for Fruit Tree Growth Period" has been developed using the identification model of apple tree phenology. In order to reduce the probability of model misjudgment, improve the accuracy of model recognition, and ensure precise control of the platform over the apple orchard, three sets of cameras deployed in the apple orchard were set to capture motion trajectories, and images were collected at three time a day: early, middle, and late, a total of 27 images per day were collected. The model calculated the recognition results of 27 images and takes the category with the highest number of recognition as the output result to correct the recognition rate and improve the reliability of the platform. [Results and Discussions] Experiments were carried out on 32,000 apple tree images. The results showed that when the initial learning rate of Adam optimizer was set as 0.0001, the accuracy of the test model tended to the optimal, and the loss value curve converged the fastest. When the initial learning rate was set to 0.0001 and the iteration rounds are set to 30, 50 and 70, the accuracies of the optimal verification set obtained by the model was 0.9354, 0.9635 and 0.9528, respectively. Therefore, the improved ResNet50 model selects the learning rate of 0.0001 and iteration rounds of 50 as the training parameters of the Adam optimizer. Ablation experiments showed that the accuracy of validation set and test set were increased by 0.8% and 2.99% in the ResNet50 model with increased SE attention mechanism, respectively. The validation set accuracy and test set accuracy of the ResNet50 model increased by 2.19% and 1.42%, respectively, when Adam optimizer was added. The accuracy of validation set and test set was 2.33% and 3.65%, respectively. The accuracy of validation set was 96.35%, the accuracy of test set was 91.94%, and the average detection time was 2.19 ms.Compared with the AlexNet, VGG16, ResNet18, ResNet34, and ResNet101 models, the improved ResNet50 model improved the accuracy of the optimal validation set by 9.63%, 5.07%, 5.81%, 4.55%, and 0.96%, respectively. The accuracy of the test set increased by 12.31%, 6.88%, 8.53%, 8.67%, and 5.58%, respectively. The confusion matrix experiment result showed that the overall recognition rate of the improved ResNet50 model for the phenological period of apple tree images was more than 90%, of which the accuracy rate of bud stage and dormancy stage was the lowest, and the probability of mutual misjudgment was high, and the test accuracy rates were 89.50% and 87.44% respectively. There were also a few misjudgments during the young fruit stage, fruit enlargement stage, and fruit coloring stage due to the similarity in characteristics between adjacent stages. The external characteristics of the Red Fuji apple tree were more obvious during the flowering and fruit ripening stages, and the model had the highest recognition rate for the flowering and fruit ripening stages, with test accuracy reaching 97.50% and 97.49%, respectively. [Conclusions] The improved ResNet50 can effectively identify apple phenology, and the research results can provide reference for the identification of orchard phenological period. After integration into the intelligent monitoring production management platform of fruit tree growth period, intelligent management and control of apple orchard can be realized.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Crop Stress Sensing and Plant Phenotyping Systems: A Review
    BAI Geng, GE Yufeng
    Smart Agriculture    2023, 5 (1): 66-81.   DOI: 10.12133/j.smartag.SA202211001
    Abstract363)   HTML49)    PDF(pc) (1595KB)(1606)       Save

    Enhancing resource use efficiency in agricultural field management and breeding high-performance crop varieties are crucial approaches for securing crop yield and mitigating negative environmental impact of crop production. Crop stress sensing and plant phenotyping systems are integral to variable-rate (VR) field management and high-throughput plant phenotyping (HTPP), with both sharing similarities in hardware and data processing techniques. Crop stress sensing systems for VR field management have been studied for decades, aiming to establish more sustainable management practices. Concurrently, significant advancements in HTPP system development have provided a technological foundation for reducing conventional phenotyping costs. In this paper, we present a systematic review of crop stress sensing systems employed in VR field management, followed by an introduction to the sensors and data pipelines commonly used in field HTPP systems. State-of-the-art sensing and decision-making methodologies for irrigation scheduling, nitrogen application, and pesticide spraying are categorized based on the degree of modern sensor and model integration. We highlight the data processing pipelines of three ground-based field HTPP systems developed at the University of Nebraska-Lincoln. Furthermore, we discuss current challenges and propose potential solutions for field HTPP research. Recent progress in artificial intelligence, robotic platforms, and innovative instruments is expected to significantly enhance system performance, encouraging broader adoption by breeders. Direct quantification of major plant physiological processes may represent one of next research frontiers in field HTPP, offering valuable phenotypic data for crop breeding under increasingly unpredictable weather conditions. This review can offer a distinct perspective, benefiting both research communities in a novel manner.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Design and Test of Self-Propelled Orchard Multi-Station Harvesting Equipment
    MIAO Youyi, CHEN Hong, CHEN Xiaobing, TIAN Haoyu, YUAN Dong
    Smart Agriculture    2022, 4 (3): 42-52.   DOI: 10.12133/j.smartag.SA202206007
    Abstract338)   HTML44)    PDF(pc) (1391KB)(491)       Save

    In order to solve the problems of high labor intensity, low efficiency of manual operation and lack of supporting machinery in the fruit harvesting of modern orchards, a self-propelled orchard multi-station harvesting equipment was designed in combination with the fruit tree dwarf anvil wide-row dense planting mode and agronomic planting requirements. The whole machine structure and working principle of the self-propelled orchard multi-station harvesting equipment were expounded. According to the environmental conditions of mountainous orchards, the crawler chassis structure was designed, and the working speed was 0~2 km/h. The operating platform including left extension platform and right extension platform was designed according to the difference of fruit tree row spacing, and the working width of the operating platform was 1500~2700 mm. In order to improve the working efficiency and ensure the same picking speed of upper and lower operators, the picking operation mode of "two sides, two heights and six stations" was proposed by comparing the difference in the working flexibility between the operator on the platform and the operator on the ground during the operation of the machine, and the in-and-out channels of fruit boxes and the automatic collection and packing device were designed. The front and rear unobstructed fruit box access system was composed of the front loading and unloading mechanism, the rear loading and unloading mechanism and the fruit box slide rail, which was convenient for the empty fruit box to enter the fruit loading station of the working platform from the front and unloading from the rear after the fruit was filled. Six sub-conveyor belts were designed to handle apples harvested by six non interacting operators at the same time. The prototype was test in the field, and the packing uniform distribution coefficient calculation method was proposed to evaluate the uniformity of fruit packing, and the performance of the prototype was comprehensively evaluated in combination with the fruit damage rate and packing speed. The results showed that, the designed self-propelled orchard multi-station harvesting equipment could synchronize with the six stations manual harvesting speed. At the same time, with the help of the expansion platform, the apple picking range covered the entire canopy of the fruit tree. The prototype worked smoothly, and the speed of each conveyor belt was in good coordination with manual picking, and there was no apple congestion occurred. The apple harvest damage rate was 4.67%, the packing uniform distribution coefficient was 1.475, and the packing speed was 72.9 apples per minute, which could meet the requirements of orchard harvest operation.

    Reference | Related Articles | Metrics | Comments0
    Automatic Spraying Technology and Facilities for Pipeline Spraying in Mountainous Orchards
    SONG Shuran, HU Shengyang, SUN Daozong, DAI Qiufang, XUE Xiuyun, XIE Jiaxing, LI Zhen
    Smart Agriculture    2022, 4 (3): 86-94.   DOI: 10.12133/j.smartag.SA202205005
    Abstract335)   HTML32)    PDF(pc) (1218KB)(1126)       Save

    The orchard in the mountainous area is rugged and steep, and there is no road for large-scale plant protection machinery traveling in the orchard, so it is difficult for mobile spraying machinery to enter. In order to solve the above problems, the automatic pipeline spraying technology and facilities were studied. A pipeline automatic spraying facility suitable for mountainous orchards was designed, which included spraying head, field spraying pipeline, automatic spraying controller and spraying groups. The spraying head was composed of a spraying unit and a constant pressure control system, which pressurized the pesticide liquid and stabilized the liquid pressure according to the preset pressure value to ensure a better atomization effect. Field spraying pipeline consisted of main pipeline, valves and spraying groups. In order to perform automatic spraying, a solenoid valve was installed between the main pipeline and each spraying group, and the automatic spraying operation of each spraying group was controlled automatically by the opening or closing of the solenoid valve. An automatic spraying controller composed of main controller, solenoid valve driving circuit, solenoid valve controlling node and power supplying unit was developed, and the controlling software was also programmed in this research. The main controller had manual and automatic two working modes. The solenoid valve controlling node was used to send wireless signals to the main controller and receive wireless signals from the main controller, and open or close the corresponding solenoid valve according to the received control signal. During the spraying operation, the pesticide liquid flowed into the orchard from the spray head through the pipeline. The automatic spray controller was used to control the solenoid valve to open or close the spray group one by one, and implement manual control or automatic control of spraying. In order to determine the continuous opening time of the solenoid valve, an effectiveness of the spray test was carried out. The spraying test results showed that spraying effectiveness could be guaranteed by opening solenoid valve for 8 s continuously. The efficiency of this pipeline automatic spraying facility was 2.61 hm2/h, which was 45-150 times that of manual spraying, and 2.1 times that of unmanned aerial vehicle spraying. The automatic pipeline spraying technology in mountainous orchards had obvious advantages in the timeliness of pest controlling. This research can provide references and ideas for the development of spray technology and intelligent spraying facilities in mountainous orchards.

    Reference | Related Articles | Metrics | Comments0
    Comparison of Droplet Deposition Performance Between Caterpillar Mist Sprayer and Six-Rotor Unmanned Aerial Vehicle in Mango Canopy
    LI Yangfan, HE Xiongkui, HAN Leng, HUANG Zhan, HE Miao
    Smart Agriculture    2022, 4 (3): 53-62.   DOI: 10.12133/j.smartag.SA202207007
    Abstract326)   HTML27)    PDF(pc) (1650KB)(375)       Save

    In order to solve the problems of pesticides abuse, nonuniformity deposition and low operating efficiency, build up the smart mango orchard, sedimentary properties of liquids in mango canopy of two orchard pesticide machinery, i.e., orchard caterpillar mist sprayer and six-rotor unmanned aerial vehicle (UAV) of were compared. Mango canopy was divided into upper, middle and lower canopy, tartrazine wsa selected as the tracer, high-definition printing paper and filter paper were used to collect pesticide droplets, the image processing methods such as deposition distribution uniformity were used to analyze the droplets. The experimental results showed that, for the surface droplets coverage rate of upper canopy leaf, unmanned aerial vehicle (UAV) was significantly higher than the cartipillar mist sprayer, there was no significant difference for the middle and lower canopy leaf. The the average coverage rate of both the front and back of leaves in UAV treatment group were 1.5~2 times for cartipillar mist sprayer, and got more deposition in back of leaves compare with caterpillar mist sprayer. The density of droplets on the front of the leaves of the mist sprayer treatment was significantly higher than that of the UAV treatment, but there was no significant difference on the back of the leaves. Both the front and back of the leaves of the plant protection UAV did not meet the requirements of disease and pest control with a low spray amount of 20/cm2. The liquid deposition of mist sprayer concentrated in the middle and lower canopy (61.1%), and while for the UAVs, it concentrated in the upper canopy (43.0%). The proportion of the deposition in the canopy was higher than that of the UAVs (48.6%), but the deposition capacity of mist sprayer in the upper canopy was insufficient, accounting for only 17%. The research shows that, compared with UAV, caterpillar mist sprayer is more suitable for the pest control of lower and middlein canopy, at the same time, the high density of droplets cover also has obvious advantages when spraying fungicide. UAV is more suitable for the external tidbits pest control of upper mango canopy, such as thrips, anthrax. According to the experimental results, a stereoscopic plant protection system can be built up in which can use the advantages of both caterpillar mist sprayer and UAV to achieve uniform coverage of pesticide in the mango tree canopy.

    Reference | Related Articles | Metrics | Comments0
    Accurate Extraction of Apple Orchard on the Loess Plateau Based on Improved Linknet Network
    ZHANG Zhibo, ZHAO Xining, GAO Xiaodong, ZHANG Li, YANG Menghao
    Smart Agriculture    2022, 4 (3): 95-107.   DOI: 10.12133/j.smartag.SA202206001
    Abstract322)   HTML18)    PDF(pc) (2040KB)(525)       Save

    The rapid increasing of apple planting area on the Loess Plateau has exerted an important influence on the regional eco-hydrology and socio-economic development. However, the orchards in this area are small and complex, and there are only county or city scale statistical data, lack of actual spatial distribution information. To this end, for the extraction of apple orchards on the Loess Plateau, in this study, a professional dataset of low-altitude remote sensing images acquired by unmanned aerial vehicle was firstly established. The R_34_Linknet network and other five commonly used deep learning semantic segmentation models SegNet, FCN_8s, DeeplabV3+, UNet and Linknet were applied to the spatial distribution extraction of apple orchards on the Loess Plateau, and the best-performing model was R_34_Linknet, with a F1 score of 87.1%, a pixel accuracy (PA) of 92.3%, an mean intersection over union (MioU) of 81.2%, a frequency weighted intersection over union (FWIoU) of 85.7%, and the mean pixel accuracy (MPA) was 89.6%. The spatial pyramid pool structure (ASPP) and R_34_Linknet network was combined to expand the receptive field of the network and get R_34_Linknet_ASPP network, and then ASPP structure was improved. Combining the spatial pyramid pooling (ASPP) with the R_34_Linknet network to expand the receptive field of the network and obtain a R_34_Linknet_ASPP network; Then the ASPP structure was improved to get a R_34_Linknet_ASPP+ network. The performance of the three networks were compared. R_34_Linknet_ASPP+ got the best performance, with 86.3% for F1, 94.7% for PA, 82.7% for MIoU, 89.0% for FWIoU, and 92.3% for MPA on the test set. The accuracy of apple orchard extraction in Wangdonggou, Changwu County and Tongji Village, Baishui County using R_34_Linknet_ASPP+ were 94.22% and 95.66%, respectively. In Wangdonggou, it was 1.21% and 0.58% higher than R_34_Linknet and R_34_Linknet_ASPP, respectively. In Tongji village, it was 1.70% and 0.90% higher than R_34_Linknet and R_34_Linknet_ASPP, respectively. The results show that the proposed R_34_Linknet_ASPP+ method can extract apple orchards accurately, the edge treatment of apple orchard plots is better, the method can be used as the technical support and theoretical basis for research on the spatial distribution mapping of apple orchards on the Loess Plateau.

    Reference | Related Articles | Metrics | Comments0