2019 , Vol. 1 >Issue 2: 64 - 72
DOI: https://doi.org/10.12133/j.smartag.2019.1.2.201812-SA021
Framework and recommendation for constructing the SAGI digital agriculture system
Received date: 2018-12-01
Request revised date: 2019-04-24
Online published: 2019-04-30
Copyright
The human society is entering the era of big data and data is becoming one of the key production elements. It is thus critical to develop the China's data-driving digital agriculture system, which would greatly promote the construction of digital China, stimulate the agriculture high-quality development and improve the agricultural competitiveness at the global market. To achieve this goal, strong integration of information is needed from multi-sources, multi-sensors, and multi-scales. This research, from the perspective of agricultural information science, describes the new framework of satellite, aerial, and ground integrated (SAGI) digital agriculture system for comprehensive agricultural monitoring, modeling, and management. The SAGI system differs from traditional digital agriculture systems and includes 5 important functionalities which are resource survey, production controlling, disaster monitoring, market early-warning and decision supporting. To make the system running in operation, it is necessary to first build an observation system, which integrates the satellite, aerial, and ground in-situ observation systems to capture more sophisticated, accurate and reliable data at different scales. The system is extremely needed for China, a large country with a great geographic difference, diverse agricultural cultivation and multiple agricultural traditions. This observing system helps to form the agricultural big data for subsequent data analysis and data mining. Secondly, using the big data collected, 4 key digitalization and monitoring tasks targeting at resource property right, production process, natural disaster and market status should be implemented so as to transform the data to knowledge. In this process, some diagnosis algorithms and models are developed to understand the growth and health of crops and animals, as well as their interaction with the agro-environment. With the above support, a management system covering the full range of agricultural production, processing, selling, management and services should be established to provide the rapid and reliable information support to decision-making as well to the local farming management, thereby guaranteeing agricultural sustainability and national food security. Thirdly, some key fields for future science and technology innovation to support the applications of the SAGI system should to be enhanced such as the standardization designing, innovation in technologies and instruments, system integration and platform development. Finally, considering the complicated and integrative characteristics of this SAG system, this research also proposed some recommendations such as holistic planning, science-technology innovation, resource sharing, multi-stakeholders participation, and expansion of application fields, so as to drive this idea to the reality.
WU Wenbin , SHI Yun , ZHOU Qingbo , YANG Peng , LIU Haiqi , WANG Fei , LIU Jia , WANG Limin , ZHANG Baohui . Framework and recommendation for constructing the SAGI digital agriculture system[J]. Smart Agriculture, 2019 , 1(2) : 64 -72 . DOI: 10.12133/j.smartag.2019.1.2.201812-SA021
[1] |
葛佳琨, 刘淑霞 . 数字农业的发展现状及展望[J]. 东北农业科学, 2017,42(3):58-62.
|
[2] |
周清波, 吴文斌, 宋茜 . 数字农业研究进展和发展趋势分析[J]. 中国农业信息, 2018,30(1):1-9.
|
[3] |
刘海启 . 加快数字农业发展, 为农业农村现代化增添新动能[J]. 中国农业资源与区划, 2017,38(12):1-6.
|
[4] |
卢钰, 赵庚星 . 数字农业及其中国的发展策略[J]. 山东农业大学学报(自然科学报), 2003,34(4):485-488.
|
[5] |
姚建松, 刘飞 . 数字农业田间信息获取技术研究现状和发展趋势[J]. 农机化研究, 2009,8:215-220.
|
[6] |
周千, 李秉柏, 程高峰 . 5S技术在数字农业中的应用浅谈[J]. 河北农业科学, 2009,13(6):146-148.
|
[7] |
赵春江 . 对我国未来精准农业发展的思考[J]. 农业网络信息, 2010,4:5-8.
|
[8] |
张宇 . 数字农业的应用研究[J]. 农业科技与装备, 2012,12:1-2.
|
[9] |
|
[10] |
|
[11] |
邹金秋, 周清波, 杨鹏 , 等. 无线传感网获取的农田数据管理系统集成与实例分析[J]. 农业工程学报, 2012,28(2):142-147.
|
[12] |
邹金秋, 周清波, 陈仲新 , 等. 农情遥感监测与服务系统集成研究[J]. 中国农业资源与区划, 2010,31(15):12-17.
|
[13] |
刘佳, 王利民, 滕飞 , 等. Google Earth影像辅助的农作物面积地面样方调查[J]. 农业工程学报, 2015,31(24):149-156.
|
[14] |
易湘生, 李伟方, 裴志远 , 等. 农村土地承包经营权要素编码规则研究[J]. 中国农学通报, 2014,30(35):269-273.
|
[15] |
唐华俊, 吴文斌, 杨鹏 , 等. 农作物空间格局遥感监测研究进展[J]. 中国农业科学, 2010,43(14):2879-2888.
|
[16] |
胡琼, 吴文斌, 宋茜 , 等. 农作物种植结构遥感提取研究进展[J]. 中国农业科学, 2015,48(10):1900-1914.
|
[17] |
刘佳, 王利民, 杨福刚 , 等. 基于HJ时间序列数据的农作物种植面积估算[J]. 农业工程学报, 2015,31(3):199-206.
|
[18] |
黄健熙, 武思杰, 刘兴权 , 等. 基于遥感信息与作物模型集合卡尔曼滤波同化的区域冬小麦产量预测[J]. 农业工程学报, 2012,28(4):142-148.
|
[19] |
熊本海, 杨亮, 郑姗姗 . 我国畜牧业信息化与智能化装备技术应用研究进展[J]. 中国农业信息, 2018,30(1):17-34.
|
[20] |
余欣荣 : 全面推进农业发展的绿色变革. 人民日报, 2018年2月8日第10版.
|
[21] |
|
[22] |
|
[23] |
刘扬, 周清波, 刘佳 , 等. 基于遥感和WebGIS的冬小麦估产支持系统[J]. 中国农业科学, 2008,41(10):3371-3375.
|
[24] |
申格, 吴文斌, 史云 , 等. 我国智慧农业研究和应用最新进展分析[J]. 中国农业信息, 2018,30(2):1-14.
|
/
〈 | 〉 |