深度学习在植物叶部病害检测与识别的研究进展
邵明月, 张建华, 冯全, 柴秀娟, 张凝, 张文蓉

Research Progress of Deep Learning in Detection and Recognition of Plant Leaf Diseases
SHAO Mingyue, ZHANG Jianhua, FENG Quan, CHAI Xiujuan, ZHANG Ning, ZHANG Wenrong
表2 近年来基于二阶检测器的植物病害目标检测研究进展
Table 2 Recent advances in plant disease target detection based on second-order detector
编号作者年份植物种类数据集/幅获取方法检测网络框架最优准确率/%
1Zhang等422021大豆2200田间拍摄Faster-RCNN83.34
2Hu等432021茶叶398田间拍摄Faster-RCNN84.50
3Eser442021

辣椒

土豆

544田间拍摄Faster RCNN-gc98.06
4Rehman等452021苹果1200PlantVillageMask RCNN96.60
5Anandhan和Singh462021水稻1500田间拍摄Mask R-CNN96.00
6Kumar472021甘蔗2940田间拍摄Faster-RCNN58.13
7Bari等282021水稻2400Kaggle+田间拍摄Faster-RCNN99.17
8李鑫然等482020苹果2029田间拍摄Faster-RCNN82.28
9Xie等302020葡萄4449田间拍摄Faster DR-IACNN81.10
10Wang等492019番茄286线上采集Mask R-CNN99.64
11Ozguven和Adem272019甜菜155甜菜叶数据集Faster-RCNN95.48
12Zhou等292019水稻3010田间拍摄Faster-RCNN98.26
13乔虹等502018葡萄2000田间拍摄Faster-RCNN90.90
16刘阗宇等262018葡萄6000田间拍摄Faster-RCNN75.52
14Fuentes等242017番茄5000田间拍摄Faster-RCNN90.60
15刘阗宇和冯全252017葡萄1135田间拍摄Faster-RCNN87.20