深度学习在植物叶部病害检测与识别的研究进展
|
邵明月, 张建华, 冯全, 柴秀娟, 张凝, 张文蓉
|
Research Progress of Deep Learning in Detection and Recognition of Plant Leaf Diseases
|
SHAO Mingyue, ZHANG Jianhua, FENG Quan, CHAI Xiujuan, ZHANG Ning, ZHANG Wenrong
|
|
表2 近年来基于二阶检测器的植物病害目标检测研究进展
|
Table 2 Recent advances in plant disease target detection based on second-order detector
|
|
编号 | 作者 | 年份 | 植物种类 | 数据集/幅 | 获取方法 | 检测网络框架 | 最优准确率/% |
---|
1 | Zhang等[42] | 2021 | 大豆 | 2200 | 田间拍摄 | Faster-RCNN | 83.34 | 2 | Hu等[43] | 2021 | 茶叶 | 398 | 田间拍摄 | Faster-RCNN | 84.50 | 3 | Eser [44] | 2021 | 辣椒 土豆 | 544 | 田间拍摄 | Faster RCNN-gc | 98.06 | 4 | Rehman等[45] | 2021 | 苹果 | 1200 | PlantVillage | Mask RCNN | 96.60 | 5 | Anandhan和Singh[46] | 2021 | 水稻 | 1500 | 田间拍摄 | Mask R-CNN | 96.00 | 6 | Kumar[47] | 2021 | 甘蔗 | 2940 | 田间拍摄 | Faster-RCNN | 58.13 | 7 | Bari等[28] | 2021 | 水稻 | 2400 | Kaggle+田间拍摄 | Faster-RCNN | 99.17 | 8 | 李鑫然等[48] | 2020 | 苹果 | 2029 | 田间拍摄 | Faster-RCNN | 82.28 | 9 | Xie等[30] | 2020 | 葡萄 | 4449 | 田间拍摄 | Faster DR-IACNN | 81.10 | 10 | Wang等[49] | 2019 | 番茄 | 286 | 线上采集 | Mask R-CNN | 99.64 | 11 | Ozguven和Adem[27] | 2019 | 甜菜 | 155 | 甜菜叶数据集 | Faster-RCNN | 95.48 | 12 | Zhou等[29] | 2019 | 水稻 | 3010 | 田间拍摄 | Faster-RCNN | 98.26 | 13 | 乔虹等[50] | 2018 | 葡萄 | 2000 | 田间拍摄 | Faster-RCNN | 90.90 | 16 | 刘阗宇等[26] | 2018 | 葡萄 | 6000 | 田间拍摄 | Faster-RCNN | 75.52 | 14 | Fuentes等[24] | 2017 | 番茄 | 5000 | 田间拍摄 | Faster-RCNN | 90.60 | 15 | 刘阗宇和冯全[25] | 2017 | 葡萄 | 1135 | 田间拍摄 | Faster-RCNN | 87.20 |
|
|
|