深度学习在植物叶部病害检测与识别的研究进展
邵明月, 张建华, 冯全, 柴秀娟, 张凝, 张文蓉

Research Progress of Deep Learning in Detection and Recognition of Plant Leaf Diseases
SHAO Mingyue, ZHANG Jianhua, FENG Quan, CHAI Xiujuan, ZHANG Ning, ZHANG Wenrong
表3 近年来基于一阶检测器的植物病害目标检测研究进展
Table 3 Recent advances in plant disease target detection based on first-order detector
编号作者年份植物种类数据集/幅获取方法检测网络框架最优准确率/%
1Wang等5120215种植物3000可控环境拍摄DBA_SSD92.20
2Shill和Rahman52202113种植物2598PlantDoc数据集YOLOv455.45(IoU=50%)
3Wang和Liu532021番茄1263田间拍摄MP-YOLOv395.60
4He等542021西瓜529田间拍摄SSD76892.40
5Atila等552021香蕉61,486PlantVillage改进的YOLO98.40
6Maski和Thondiyath332021木瓜2000田间拍摄YOLO99.90
7李昊等342021柑橘392田间拍摄YOLOv487.72
8Sun等362021苹果2230田间拍摄MEAN-SSD83.12
9Liu和Wang562020番茄15,000田间拍摄YOLOv392.39
10Morbekar等57202014种植物54,306PlantVillageYOLO65.48
11Ponnusamy等582020多种植物304田间拍摄YOLOv382.38
12Liu和Wang592020番茄2385田间拍摄+线上采集MobileNetv2-YOLOv394.13
13Sun等372020玉米8152NLB数据集SSD91.83
14Jiang等602019苹果26,377可控环境+田间拍摄INAR-SSD78.80
15Tian等612019苹果640田间拍摄+线上采集YOLOv3-Dense95.57
16Ramcharan等622019木薯2415田间拍摄SSD94.00
17Bhatt等322019茶叶4000田间拍摄+线上采集YOLOv386.00
18Selvaraj等382019香蕉18,000田间拍摄SSD99.00