深度学习在植物叶部病害检测与识别的研究进展
|
|
邵明月, 张建华, 冯全, 柴秀娟, 张凝, 张文蓉
|
Research Progress of Deep Learning in Detection and Recognition of Plant Leaf Diseases
|
|
SHAO Mingyue, ZHANG Jianhua, FENG Quan, CHAI Xiujuan, ZHANG Ning, ZHANG Wenrong
|
|
表6 近年来基于轻量型网络的植物病害识别以及病害检测与识别同时进行的研究进展
|
Table 6 Recent advances in plant disease recognition based on lightweight network and disease detection and recognition simultaneously
|
|
| 编号 | 作者 | 年份 | 植物种类 | 数据集/幅 | 获取方法 | 神经网络类型 | 最高准确率/% |
|---|
| 1 | Srinidhi等[110] | 2021 | 苹果 | 3600 | 田间拍摄 | EfficientNetB7 | 99.80 | | 2 | Zhou等[111] | 2021 | 番茄、黄瓜 | 4284 | 田间拍摄 | PRP-Net | 98.26 | | 3 | Rashid等[84] | 2021 | 马铃薯 | 4062 | PlantVillage | YOLOv5+PDDCNN | 99.75 | | 4 | Zhang 等[112] | 2020 | 黄瓜 | 2816 | 田间拍摄 | EfficientNet-B4 | 96.00 | | 5 | 王春山等[80] | 2020 | 3种植物 | 19,517 | PlantVillage、AI Challenge2018数据集 | Multi-scale ResNet | 95.95 | | 6 | Saleem等[81] | 2020 | 14种植物 | 54,306 | PlantVillage | Xception | 99.81 | | 7 | Kiratiratanapruk[85] | 2020 | 水稻 | 6330 | 田间拍摄 | YOLOv3 | 79.19 | | 8 | 刘洋等[79] | 2019 | 13种植物 | 54,306 | PlantVillage | MobileNet、Inception V3 | MobileNet:95.02 Inception V3:95.62 | | 9 | De Ocamop和Dadios[82] | 2018 | 5种植物 | 6970 | 田间拍摄+线上采集 | MobileNet | 89.00 | | 10 | De Luna等[83] | 2018 | 番茄 | 4923 | 田间拍摄 | AlexNet+ F-RCNN | 95.75 |
|
|
|