深度学习在植物叶部病害检测与识别的研究进展
邵明月, 张建华, 冯全, 柴秀娟, 张凝, 张文蓉

Research Progress of Deep Learning in Detection and Recognition of Plant Leaf Diseases
SHAO Mingyue, ZHANG Jianhua, FENG Quan, CHAI Xiujuan, ZHANG Ning, ZHANG Wenrong
表6 近年来基于轻量型网络的植物病害识别以及病害检测与识别同时进行的研究进展
Table 6 Recent advances in plant disease recognition based on lightweight network and disease detection and recognition simultaneously
编号作者年份植物种类数据集/幅获取方法神经网络类型最高准确率/%
1Srinidhi等1102021苹果3600田间拍摄EfficientNetB799.80
2Zhou等1112021番茄、黄瓜4284田间拍摄PRP-Net98.26
3Rashid等842021马铃薯4062PlantVillageYOLOv5+PDDCNN99.75
4Zhang 等1122020黄瓜2816田间拍摄EfficientNet-B496.00
5王春山等8020203种植物19,517PlantVillage、AI Challenge2018数据集Multi-scale ResNet95.95
6Saleem等81202014种植物54,306PlantVillageXception99.81
7Kiratiratanapruk852020水稻6330田间拍摄YOLOv379.19
8刘洋等79201913种植物54,306PlantVillageMobileNet、Inception V3

MobileNet:95.02

Inception V3:95.62

9De Ocamop和Dadios8220185种植物6970田间拍摄+线上采集MobileNet89.00
10De Luna等832018番茄4923田间拍摄AlexNet+ F-RCNN95.75