欢迎您访问《智慧农业(中英文)》官方网站! English

Smart Agriculture ›› 2021, Vol. 3 ›› Issue (2): 55-67.doi: 10.12133/j.smartag.2021.3.2.202103-SA008

• 专题--作物模型与可视化 • 上一篇    下一篇

基于校正WOFOST模型的枣树生长模拟与水分利用评价

白铁成1(), 王涛1, 张楠楠1,2   

  1. 1.塔里木大学 信息工程学院/新疆南疆农业信息化研究中心,新疆 阿拉尔 843300
    2.中国农业大学 信息与电气工程学院,北京 100083
  • 收稿日期:2021-03-23 修回日期:2021-04-20 出版日期:2021-06-30 发布日期:2021-06-30
  • 基金资助:
    国家自然科学基金(61501314);兵团中青年科技创新领军人才项目(2018CB020)
  • 通讯作者: 白铁成 E-mail:baitiecheng1983@163.com

Dynamic Simulation of Jujube Tree Growth and Water Use Evaluation Based on the Calibrated WOFOST Model

BAI Tiecheng1(), WANG Tao1, ZHANG Nannan1,2   

  1. 1.College of Information Engineering/Southern Xinjiang Research Center Information Technology in Agriculture, Tarim University, Alaer 843300, China
    2.College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
  • Received:2021-03-23 Revised:2021-04-20 Online:2021-06-30 Published:2021-06-30
  • corresponding author: Tiecheng BAI E-mail:baitiecheng1983@163.com

摘要:

为实现定量化分析温、光和水资源对果树生长的影响,本研究以成龄骏枣树为研究对象,提出了基于校正WOFOST模型的枣树生长和水分运移模拟方法。利用2016和2017年的田间试验观测数据,重点校正WOFOST模型的物候学发育、初始化、绿叶、CO2同化、干物质分配、呼吸作用和水分利用参数。在田间尺度,完成总地上生物量(TAGP)、叶面积指数(LAI)和土壤水分含量的动态模拟和精度验证;在县域尺度,使用55个果园的最大LAI、单产、实际蒸散量(ETa)和水分利用效率(WUE)数据评价模型区域尺度的模拟性能。结果表明,在田间尺度,校正模型模拟不同灌溉梯度TAGP的决定系数R2范围为0.92~0.98,归一化均方根误差NRMSE为8.7%~20.5%;模拟LAI的R2范围为0.79~0.97,NRMSE为8.3%~21.1%;模拟土壤水分含量的决定系数R2范围为0.29~0.75,NRMSE为4.1%~6.1%。在县域尺度,两年模拟最大LAI与实测LAI的R2分别为0.64和0.78,NRMSE分别为13.3%和10.7%;模拟单产的R2分别为0.48和0.60,NRMSE分别是12.1%和11.9%;模拟ETa均方根误差分别为36.1 mm(7.9%)和30.8 mm(7.4%);模型也表现了较高的WUE模拟精度(10%<NRMSE<20%),均方根误差RMSE值分别为0.23和0.28 kg/m3。WOFOST模型在田间和县域尺度都取得了较高的枣树生长和水分运移模拟精度,可为土壤、气象、灌溉管理和枣树生长耦合影响的定量化分析提供新思路。

关键词: 作物生长模型, 参数校正, WOFOST, 枣树, 水分利用效率

Abstract:

Irrigation schemes determined based on statistical analysis of field trials are usually only applicable to specific soils and meteorological environments. It is difficult to quantitatively analyze the impact of irrigation strategies on the growth of jujube trees. In order to realize the quantitative analysis of the influence of temperature, light and water resources on the growth of fruit trees, WOrld FOod Studies (WOFOST) model parameters were calibrated to simulate the jujube tree growth and water migration process. Firstly, the observed data obtained from field trials in 2016 and 2017 were used to calibrate the phenology development, initialization, green leaf, CO2 assimilation, dry matter partitioning, respiration, and water use parameters of the WOFOST model. Secondly, the time series of total above-ground biomass, leaf area index (LAI) and soil moisture content in field trials were dynamically simulated, and accuracy verification and analysis were also performed. Finally, the maximum LAI, yield, actual evapotranspiration (ETa) and water use efficiency (WUE) data of 55 orchards were employed to evaluate the performance of the calibrated model at the county scale. The results showed that the coefficient of determination R2 of TAGP simulated in the field test area was between 0.92 and 0.98, and the normalized root mean square error (NRMSE) was between 8.7% and 20.5%, the R2 of simulated LAI ranged from 0.79 to 0.97, and the NRMSE ranged from 8.3% to 21.1%. The R2 of the simulated soil moisture content was between 0.29 and 0.75, and the NRMSE ranged from 4.1% and 6.1%. The model could well simulate the time series of jujube tree growth dynamics and soil moisture content changes. At the county scale, the R2 between the simulated and measured maximum LAI were 0.64 and 0.78, and the NRMSE were 13.3% and 10.7% in 2016 and 2017, respectively. The simulated yield showed R2 value of 0.48 and 0.60, and NRMSE of 12.1% and 11.9%, respectively. RMSE of the simulated versus measured ETa were 36.1 mm (7.9%) and 30.8 mm (7.4%), respectively. The model also showed high WUE simulation accuracy (10%<NRMSE<20%) with RMSE values of 0.23 and 0.28 kg/m3 in 2016 and 2017, respectively. In short, WOFOST model achieved accurate simulation of jujube tree growth and water transport at the field and county scales, which may provide new ideas for the quantitative and mechanism analysis of the coupled effects of soil, weather, irrigation management and jujube tree growth.

Key words: crop growth model, parameter calibration, WOFOST, jujube tree, water use efficiency

中图分类号: