Welcome to Smart Agriculture 中文
30 November 2024, Volume 6 Issue 6
Topic--Intelligent Agricultural Knowledge Services and Smart Unmanned Farms(Part 1)
Research Status and Prospects of Key Technologies for Rice Smart Unmanned Farms | Open Access
YU Fenghua, XU Tongyu, GUO Zhonghui, BAI Juchi, XIANG Shuang, GUO Sien, JIN Zhongyu, LI Shilong, WANG Shikuan, LIU Meihan, HUI Yinxuan
2024, 6(6):  1-22.  doi:10.12133/j.smartag.SA202410018
Asbtract ( 598 )   HTML ( 111)   PDF (3047KB) ( 1129 )  
Figures and Tables | References | Related Articles | Metrics

[Significance] Rice smart unmanned farm is the core component of smart agriculture, and it is a key path to realize the modernization of rice production and promote the high-quality development of agriculture. Leveraging advanced information technologies such as the Internet of Things (IoT) and artificial intelligence (AI), these farms enable deep integration of data-driven decision making and intelligent machines. This integration creates an unmanned production system that covers the entire process from planting and managing rice crops to harvesting, greatly improving the efficiency and precision of rice cultivation. [Progress] This paper systematically sorted out the key technologies of rice smart unmanned farms in the three main links of pre-production, production and post-production, and the key technologies of pre-production mainly include the construction of high-standard farmland, unmanned nursery, land leveling, and soil nutrient testing. The construction of high-standard farmland is the foundation of the physical environment of the smart unmanned farms of rice, which provides perfect operating environment for the operation of modernized smart farm machinery through the reasonable layout of the field roads, good drainage and irrigation systems, and the scientific planting structure. Agricultural machine operation provides a perfect operating environment. The technical level of unmanned nursery directly determines the quality of rice cultivation and harvesting in the later stage, and a variety of rice seeding machines and nursery plate setting machines have been put into use. Land leveling technology can improve the growing environment of rice and increase the land utilization rate, and the current land leveling technology through digital sensing and path planning technology, which improves the operational efficiency and reduces the production cost at the same time. Soil nutrient detection technology is mainly detected by electrochemical analysis and spectral analysis, but both methods have their advantages and disadvantages, how to integrate the two methods to achieve an all-round detection of soil nutrient content is the main direction of future research. The key technologies in production mainly include rice dry direct seeding, automated transplanting, precise variable fertilization, intelligent irrigation, field weed management, and disease diagnosis. Among them, the rice dry direct seeding technology requires the planter to have high precision and stability to ensure reasonable seeding depth and density. Automated rice transplanting technology mainly includes three ways: root washing seedling machine transplanting, blanket seedling machine transplanting, and potting blanket seedling machine transplanting; at present, the incidence of problems in the automated transplanting process should be further reduced, and the quality and efficiency of rice machine transplanting should be improved. Precision variable fertilization technology is mainly composed of three key technologies: information perception, prescription decision-making and precise operation, but there are still fewer cases of unmanned farms combining the three technologies, and in the future, the main research should be on the method of constructing the whole process operation system of variable fertilization. The smart irrigation system is based on the water demand of the whole life cycle of rice to realize adaptive irrigation control, and the current smart irrigation technology can automatically adjust the irrigation strategy through real-time monitoring of soil, climate and crop growth conditions to further improve irrigation efficiency and agricultural production benefits. The field weed management and disease diagnosis technology mainly recognizes rice weeds as well as diseases through deep learning and other methods, and combines them with precision application technology for prevention and intervention. Post-production key technologies mainly include rice yield estimation, unmanned harvesting, rice storage and processing quality testing. Rice yield estimation technology is mainly used to predict yield by combining multi-source data and algorithms, but there are still problems such as the difficulty of integrating multi-source data, which requires further research. In terms of unmanned aircraft harvesting technology, China's rice combine harvester market has tended to stabilize, and the safety of the harvester's autopilot should be further improved in the future. Rice storage and processing quality detection technology mainly utilizes spectral technology and machine vision technology to detect spectra and images, and future research can combine deep learning and multimodal fusion technology to improve the machine vision system's ability and adaptability to recognize the appearance characteristics of rice. [Conclusions and Prospects] This paper reviews the researches of the construction of intelligent unmanned rice farms at home and abroad in recent years, summarizes the main difficulties faced by the key technologies of unmanned farms in practical applications, analyzes the challenges encountered in the construction of smart unmanned farms, summarizes the roles and responsibilities of the government, enterprises, scientific research institutions, cooperatives and other subjects in promoting the construction of intelligent unmanned rice farms, and puts forward relevant suggestions. It provides certain support and development ideas for the construction of intelligent unmanned rice farms in China.

Research Progress and Prospect of Multi-robot Collaborative SLAM in Complex Agricultural Scenarios | Open Access
MA Nan, CAO Shanshan, BAI Tao, KONG Fantao, SUN Wei
2024, 6(6):  23-43.  doi:10.12133/j.smartag.SA202406005
Asbtract ( 426 )   HTML ( 57)   PDF (2300KB) ( 3461 )  
Figures and Tables | References | Related Articles | Metrics

[Significance] The rapid development of artificial intelligence and automation has greatly expanded the scope of agricultural automation, with applications such as precision farming using unmanned machinery, robotic grazing in outdoor environments, and automated harvesting by orchard-picking robots. Collaborative operations among multiple agricultural robots enhance production efficiency and reduce labor costs, driving the development of smart agriculture. Multi-robot simultaneous localization and mapping (SLAM) plays a pivotal role by ensuring accurate mapping and localization, which are essential for the effective management of unmanned farms. Compared to single-robot SLAM, multi-robot systems offer several advantages, including higher localization accuracy, larger sensing ranges, faster response times, and improved real-time performance. These capabilities are particularly valuable for completing complex tasks efficiently. However, deploying multi-robot SLAM in agricultural settings presents significant challenges. Dynamic environmental factors, such as crop growth, changing weather patterns, and livestock movement, increase system uncertainty. Additionally, agricultural terrains vary from open fields to irregular greenhouses, requiring robots to adjust their localization and path-planning strategies based on environmental conditions. Communication constraints, such as unstable signals or limited transmission range, further complicate coordination between robots. These combined challenges make it difficult to implement multi-robot SLAM effectively in agricultural environments. To unlock the full potential of multi-robot SLAM in agriculture, it is essential to develop optimized solutions that address the specific technical demands of these scenarios. [Progress] Existing review studies on multi-robot SLAM mainly focus on a general technological perspective, summarizing trends in the development of multi-robot SLAM, the advantages and limitations of algorithms, universally applicable conditions, and core issues of key technologies. However, there is a lack of analysis specifically addressing multi-robot SLAM under the characteristics of complex agricultural scenarios. This study focuses on the main features and applications of multi-robot SLAM in complex agricultural scenarios. The study analyzes the advantages and limitations of multi-robot SLAM, as well as its applicability and application scenarios in agriculture, focusing on four key components: multi-sensor data fusion, collaborative localization, collaborative map building, and loopback detection. From the perspective of collaborative operations in multi-robot SLAM, the study outlines the classification of SLAM frameworks, including three main collaborative types: centralized, distributed, and hybrid. Based on this, the study summarizes the advantages and limitations of mainstream multi-robot SLAM frameworks, along with typical scenarios in robotic agricultural operations where they are applicable. Additionally, it discusses key issues faced by multi-robot SLAM in complex agricultural scenarios, such as low accuracy in mapping and localization during multi-sensor fusion, restricted communication environments during multi-robot collaborative operations, and low accuracy in relative pose estimation between robots. [Conclusions and Prospects] To enhance the applicability and efficiency of multi-robot SLAM in complex agricultural scenarios, future research needs to focus on solving these critical technological issues. Firstly, the development of enhanced data fusion algorithms will facilitate improved integration of sensor information, leading to greater accuracy and robustness of the system. Secondly, the combination of deep learning and reinforcement learning techniques is expected to empower robots to better interpret environmental patterns, adapt to dynamic changes, and make more effective real-time decisions. Thirdly, large language models will enhance human-robot interaction by enabling natural language commands, improving collaborative operations. Finally, the integration of digital twin technology will support more intelligent path planning and decision-making processes, especially in unmanned farms and livestock management systems. The convergence of digital twin technology with SLAM is projected to yield innovative solutions for intelligent perception and is likely to play a transformative role in the realm of agricultural automation. This synergy is anticipated to revolutionize the approach to agricultural tasks, enhancing their efficiency and reducing the reliance on labor.

Research Status and Prospect of Quality Intelligent Control Technology in Facilities Environment of Characteristic Agricultural Products | Open Access
GUO Wei, WU Huarui, GUO Wang, GU Jingqiu, ZHU Huaji
2024, 6(6):  44-62.  doi:10.12133/j.smartag.SA202411017
Asbtract ( 303 )   HTML ( 44)   PDF (3153KB) ( 821 )  
Figures and Tables | References | Related Articles | Metrics

[Significance] In view of the lack of monitoring means of quality influence factors in the production process of characteristic agricultural products with in central and western regions of China, the weak ability of intelligent control, the unclear coupling relationship of quality control elements and the low degree of systematic application, the existing technologies described such as intelligent monitoring of facility environment, growth and nutrition intelligent control model, architecture of intelligent management and control platform and so on. Through the application of the Internet of Things, big data and the new generation of artificial intelligence technology, it provides technical support for the construction and application of intelligent process quality control system for the whole growth period of characteristic agricultural products. [Progress] The methods of environmental regulation and nutrition regulation are analyzed, including single parameters and combined control methods, such as light, temperature, humidity, CO2 concentration, fertilizer and water, etc. The multi-parameter coupling control method has the advantage of more comprehensive scene analysis. Based on the existing technology, a multi-factor coupling method of integrating growth state, agronomy, environment, input and agricultural work is put forward. This paper probes into the system architecture of the whole process service of quality control, the visual identification system of the growth process of agricultural products and the knowledge-driven agricultural technical service system, and introduces the technology of the team in the disease knowledge Q & A scene through multi-modal knowledge graph and large model technology. [Conclusions and Prospects] Based on the present situation of the production of characteristic facility agricultural products and the overall quality of farmers in the central and western regions of China, it is appropriate to transfer the whole technical system such as facility tomato, facility cucumber and so on. According to the varieties of characteristic agricultural products, cultivation models, quality control objectives to adapt to light, temperature, humidity and other parameters, as well as fertilizer, water, medicine and other input plans, a multi-factor coupling model suitable for a specific planting area is generated and long-term production verification and model correction are carried out. And popularize it in a wider area, making full use of the advantages of intelligent equipment and data elements will promote the realization of light simplification of production equipment, scene of intelligent technology, diversification of service models, on-line quality control, large-scale production of digital intelligence, and value of data elements, further cultivate facilities to produce new quality productivity.

Vegetable Crop Growth Modeling in Digital Twin Platform Based on Large Language Model Inference | Open Access
ZHAO Chunjiang, LI Jingchen, WU Huarui, YANG Yusen
2024, 6(6):  63-71.  doi:10.12133/j.smartag.SA202410008
Asbtract ( 725 )   HTML ( 125)   PDF (1460KB) ( 668 )  
Figures and Tables | References | Related Articles | Metrics

[Objective] In the era of digital agriculture, real-time monitoring and predictive modeling of crop growth are paramount, especially in autonomous farming systems. Traditional crop growth models, often constrained by their reliance on static, rule-based methods, fail to capture the dynamic and multifactorial nature of vegetable crop growth. This research tried to address these challenges by leveraging the advanced reasoning capabilities of pre-trained large language models (LLMs) to simulate and predict vegetable crop growth with accuracy and reliability. Modeling the growth of vegetable crops within these platforms has historically been hindered by the complex interactions among biotic and abiotic factors. [Methods] The methodology was structured in several distinct phases. Initially, a comprehensive dataset was curated to include extensive information on vegetable crop growth cycles, environmental conditions, and management practices. This dataset incorporates continuous data streams such as soil moisture, nutrient levels, climate variables, pest occurrence, and historical growth records. By combining these data sources, the study ensured that the model was well-equipped to understand and infer the complex interdependencies inherent in crop growth processes. Then, advanced techniques was emploied for pre-training and fine-tuning LLMs to adapt them to the domain-specific requirements of vegetable crop modeling. A staged intelligent agent ensemble was designed to work within the digital twin platform, consisting of a central managerial agent and multiple stage-specific agents. The managerial agent was responsible for identifying transitions between distinct growth stages of the crops, while the stage-specific agents were tailored to handle the unique characteristics of each growth phase. This modular architecture enhanced the model's adaptability and precision, ensuring that each phase of growth received specialized attention and analysis. [Results and Discussions] The experimental validation of this method was conducted in a controlled agricultural setting at the Xiaotangshan Modern Agricultural Demonstration Park in Beijing. Cabbage (Zhonggan 21) was selected as the test crop due to its significance in agricultural production and the availability of comprehensive historical growth data. Over five years, the dataset collected included 4 300 detailed records, documenting parameters such as plant height, leaf count, soil conditions, irrigation schedules, fertilization practices, and pest management interventions. This dataset was used to train the LLM-based system and evaluate its performance using ten-fold cross-validation. The results of the experiments demonstrating the efficacy of the proposed system in addressing the complexities of vegetable crop growth modeling. The LLM-based model achieved 98% accuracy in predicting crop growth degrees and a 99.7% accuracy in identifying growth stages. These metrics significantly outperform traditional machine learning approaches, including long short-term memory (LSTM), XGBoost, and LightGBM models. The superior performance of the LLM-based system highlights its ability to reason over heterogeneous data inputs and make precise predictions, setting a new benchmark for crop modeling technologies. Beyond accuracy, the LLM-powered system also excels in its ability to simulate growth trajectories over extended periods, enabling farmers and agricultural managers to anticipate potential challenges and make proactive decisions. For example, by integrating real-time sensor data with historical patterns, the system can predict how changes in irrigation or fertilization practices will impact crop health and yield. This predictive capability is invaluable for optimizing resource allocation and mitigating risks associated with climate variability and pest outbreaks. [Conclusions] The study emphasizes the importance of high-quality data in achieving reliable and generalizable models. The comprehensive dataset used in this research not only captures the nuances of cabbage growth but also provides a blueprint for extending the model to other crops. In conclusion, this research demonstrates the transformative potential of combining large language models with digital twin technology for vegetable crop growth modeling. By addressing the limitations of traditional modeling approaches and harnessing the advanced reasoning capabilities of LLMs, the proposed system sets a new standard for precision agriculture. Several avenues also are proposed for future work, including expanding the dataset, refining the model architecture, and developing multi-crop and multi-region capabilities.

Seedling Stage Corn Line Detection Method Based on Improved YOLOv8 | Open Access
LI Hongbo, TIAN Xin, RUAN Zhiwen, LIU Shaowen, REN Weiqi, SU Zhongbin, GAO Rui, KONG Qingming
2024, 6(6):  72-84.  doi:10.12133/j.smartag.SA202408008
Asbtract ( 335 )   HTML ( 71)   PDF (3458KB) ( 195 )  
Figures and Tables | References | Related Articles | Metrics

[Objective] Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field. However, traditional detection methods struggle to maintain high accuracy and efficiency under challenging conditions, such as strong light exposure and weed interference. The aims are to develop an effective crop line extraction method by combining YOLOv8-G, Affinity Propagation, and the Least Squares method to enhance detection accuracy and performance in complex field environments. [Methods] The proposed method employs machine vision techniques to address common field challenges. YOLOv8-G, an improved object detection algorithm that combines YOLOv8 and GhostNetV2 for lightweight, high-speed performance, was used to detect the central points of crops. These points were then clustered using the Affinity Propagation algorithm, followed by the application of the Least Squares method to extract the crop lines. Comparative tests were conducted to evaluate multiple backbone networks within the YOLOv8 framework, and ablation studies were performed to validate the enhancements made in YOLOv8-G. [Results and Discussions] The performance of the proposed method was compared with classical object detection and clustering algorithms. The YOLOv8-G algorithm achieved average precision (AP) values of 98.22%, 98.15%, and 97.32% for corn detection at 7, 14, and 21 days after emergence, respectively. Additionally, the crop line extraction accuracy across all stages was 96.52%. These results demonstrate the model's ability to maintain high detection accuracy despite challenging conditions in the field. [Conclusions] The proposed crop line extraction method effectively addresses field challenges such as lighting and weed interference, enabling rapid and accurate crop identification. This approach supports the automatic navigation of agricultural machinery, offering significant improvements in the precision and efficiency of field operations.

Precision Target Spraying System Integrated with Remote Deep Learning Recognition Model for Cabbage Plant Centers | Open Access
ZHANG Hui, HU Jun, SHI Hang, LIU Changxi, WU Miao
2024, 6(6):  85-95.  doi:10.12133/j.smartag.SA202406013
Asbtract ( 204 )   HTML ( 23)   PDF (1923KB) ( 663 )  
Figures and Tables | References | Related Articles | Metrics

[Objective] Spraying calcium can effectively prevent the occurrence of dry burning heart disease in Chinese cabbage. Accurately targeting spraying calcium can more effectively improve the utilization rate of calcium. Since the sprayer needs to move rapidly in the field, this can lead to over-application or under-application of the pesticide. This study aims to develop a targeted spray control system based on deep learning technology, explore the relationship between the advance speed, spray volume, and coverage of the sprayer, thereby addressing the uneven application issues caused by different nebulizer speeds by studying the real scenario of calcium administration to Chinese cabbage hearts. [Methods] The targeted spraying control system incorporates advanced sensors and computing equipment that were capable of obtaining real-time data regarding the location of crops and the surrounding environmental conditions. This data allowed for dynamic adjustments to be made to the spraying system, ensuring that pesticides were delivered with high precision. To further enhance the system's real-time performance and accuracy, the YOLOv8 object detection model was improved. A Ghost-Backbone lightweight network structure was introduced, integrating remote sensing technologies along with the sprayer's forward speed and the frequency of spray responses. This innovative combination resulted in the creation of a YOLOv8-Ghost-Backbone lightweight model specifically tailored for agricultural applications. The model operated on the Jetson Xavier NX controller, which was a high-performance, low-power computing platform designed for edge computing. The system was allowed to process complex tasks in real time directly in the field. The targeted spraying system was composed of two essential components: A pressure regulation unit and a targeted control unit. The pressure regulation unit was responsible for adjusting the pressure within the spraying system to ensure that the output remains stable under various operational conditions. Meanwhile, the targeted control unit played a crucial role in precisely controlling the direction, volume, and coverage of the spray to ensure that the pesticide was applied effectively to the intended areas of the plants. To rigorously evaluate the performance of the system, a series of intermittent spray tests were conducted. During these tests, the forward speed of the sprayer was gradually increased, allowing to assess how well the system responded to changes in speed. Throughout the testing phase, the response frequency of the electromagnetic valve was measured to calculate the corresponding spray volume for each nozzle. [Results and Conclusions] The experimental results indicated that the overall performance of the targeted spraying system was outstanding, particularly under conditions of high-speed operation. By meticulously recording the response times of the three primary components of the system, the valuable data were gathered. The average time required for image processing was determined to be 29.50 ms, while the transmission of decision signals took an average of 6.40 ms. The actual spraying process itself required 88.83 ms to complete. A thorough analysis of these times revealed that the total response time of the spraying system lagged by approximately 124.73 ms when compared to the electrical signal inputs. Despite the inherent delays, the system was able to maintain a high level of spraying accuracy by compensating for the response lag of the electromagnetic valve. Specifically, when tested at a speed of 7.2 km/h, the difference between the actual spray volume delivered and the required spray volume, after accounting for compensation, was found to be a mere 0.01 L/min. This minimal difference indicates that the system met the standard operational requirements for effective pesticide application, thereby demonstrating its precision and reliability in practical settings. [Conclusions] In conclusion, this study developed and validated a deep learning-based targeted spraying control system that exhibited excellent performance regarding both spraying accuracy and response speed. The system serves as a significant technical reference for future endeavors in agricultural automation. Moreover, the research provides insights into how to maintain consistent spraying effectiveness and optimize pesticide utilization efficiency by dynamically adjusting the spraying system as the operating speed varies. The findings of this research will offer valuable experiences and guidance for the implementation of agricultural robots in the precise application of pesticides, with a particular emphasis on parameter selection and system optimization.

Rice Leaf Disease Image Enhancement Based on Improved CycleGAN | Open Access
YAN Congkuan, ZHU Dequan, MENG Fankai, YANG Yuqing, TANG Qixing, ZHANG Aifang, LIAO Juan
2024, 6(6):  96-108.  doi:10.12133/j.smartag.SA202407019
Asbtract ( 228 )   HTML ( 27)   PDF (1744KB) ( 163 )  
Figures and Tables | References | Related Articles | Metrics

Objective Rice diseases significantly impact both the yield and quality of rice production. Automatic recognition of rice diseases using computer vision is crucial for ensuring high yields, quality, and efficiency. However, rice disease image recognition faces challenges such as limited availability of datasets, insufficient sample sizes, and imbalanced sample distributions across different disease categories. To address these challenges, a data augmentation method for rice leaf disease images was proposed based on an improved CycleGAN model in this reseach which aimed to expand disease image datasets by generating disease features, thereby alleviating the burden of collecting real disease data and providing more comprehensive and diverse data to support automatic rice disease recognition. Methods The proposed approach built upon the CycleGAN framework, with a key modification being the integration of a convolutional block attention module (CBAM) into the generator's residual module. This enhancement strengthened the network's ability to extract both local key features and global contextual information pertaining to rice disease-affected areas. The model increased its sensitivity to small-scale disease targets and subtle variations between healthy and diseased domains. This design effectively mitigated the potential loss of critical feature information during the image generation process, ensuring higher fidelity in the resulting images. Additionally, skip connections were introduced between the residual modules and the CBAM. These connections facilitate improved information flow between different layers of the network, addressing common issues such as gradient vanishing during the training of deep networks. Furthermore, a perception similarity loss function, designed to align with the human visual system, was incorporated into the overall loss function. This addition enabled the deep learning model to more accurately measure perceptual differences between the generated images and real images, thereby guiding the network towards producing higher-quality samples. This adjustment also helped to reduce visual artifacts and excessive smoothing, while concurrently improving the stability of the model during the training process. To comprehensively evaluate the quality of the rice disease images generated by the proposed model and to assess its impact on disease recognition performance, both subjective and objective evaluation metrics were utilized. These included user perception evaluation (UPE), structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and the performance of disease recognition within object detection frameworks. Comparative experiments were conducted across multiple GAN models, enabling a thorough assessment of the proposed model's performance in generating rice disease images. Additionally, different attention mechanisms, including efficient channel attention (ECA), coordinate attention (CA), and CBAM, were individually embedded into the generator's residual module. These variations allowed for a detailed comparison of the effects of different attention mechanisms on network performance and the visual quality of the generated images. Ablation studies were further performed to validate the effectiveness of the CBAM residual module and the perception similarity loss function in the network's overall architecture. Based on the generated rice disease samples, transfer learning experiments were conducted using various object detection models. By comparing the performance of these models before and after transfer learning, the effectiveness of the generated disease image data in enhancing the performance of object detection models was empirically verified. Results and Discussions The rice disease images generated by the improved CycleGAN model surpassed those produced by other GAN variants in terms of image detail clarity and the prominence of disease-specific features. In terms of objective quality metrics, the proposed model exhibited a 3.15% improvement in SSIM and an 8.19% enhancement in PSNR compared to the original CycleGAN model, underscoring its significant advantage in structural similarity and signal-to-noise ratio. The comparative experiments involving different attention mechanisms and ablation studies revealed that embedding the CBAM into the generator effectively increased the network's focus on critical disease-related features, resulting in more realistic and clearly defined disease-affected regions in the generated images. Furthermore, the introduction of the perception similarity loss function substantially enhanced the network's ability to perceive and represent disease-related information, thereby improving the visual fidelity and realism of the generated images. Additionally, transfer learning applied to object detection models such as YOLOv5s, YOLOv7-tiny, and YOLOv8s led to significant improvements in disease detection performance on the augmented dataset. Notably, the detection accuracy of the YOLOv5s model increased from 79.7% to 93.8%, representing a considerable enhancement in both generalization ability and robustness. This improvement also effectively reduced the rates of false positives and false negatives, resulting in more stable and reliable performance in rice disease detection tasks. Conclusions The rice leaf disease image generation method based on the improved CycleGAN model, as proposed in this study, effectively transforms images of healthy leaves into those depicting disease symptoms. By addressing the challenge of insufficient disease samples, this method significantly improves the disease recognition capabilities of object detection models. Therefore, it holds considerable application potential in the domain of leaf disease image augmentation and offers a promising new direction for expanding datasets of disease images for other crops.

Image Segmentation Method of Chinese Yam Leaves in Complex Background Based on Improved ENet | Open Access
LU Bibo, LIANG Di, YANG Jie, SONG Aiqing, HUANGFU Shangwei
2024, 6(6):  109-120.  doi:10.12133/j.smartag.SA202407007
Asbtract ( 160 )   HTML ( 18)   PDF (2024KB) ( 511 )  
Figures and Tables | References | Related Articles | Metrics

[Objective] Crop leaf area is an important indicator reflecting light absorption efficiency and growth conditions. This paper established a diverse Chinese yam image dataset and proposesd a deep learning-based method for Chinese yam leaf image segmentation. This method can be used for real-time measurement of Chinese yam leaf area, addressing the inefficiency of traditional measurement techniques. This will provide more reliable data support for genetic breeding, growth and development research of Chinese yam, and promote the development and progress of the Chinese yam industry. [Methods] A lightweight segmentation network based on improved ENet was proposed. Firstly, based on ENet, the third stage was pruned to reduce redundant calculations in the model. This improved the computational efficiency and running speed, and provided a good basis for real-time applications. Secondly, PConv was used instead of the conventional convolution in the downsampling bottleneck structure and conventional bottleneck structure, the improved bottleneck structure was named P-Bottleneck. PConv applied conventional convolution to only a portion of the input channels and left the rest of the channels unchanged, which reduced memory accesses and redundant computations for more efficient spatial feature extraction. PConv was used to reduce the amount of model computation while increase the number of floating-point operations per second on the hardware device, resulting in lower latency. Additionally, the transposed convolution in the upsampling module was improved to bilinear interpolation to enhance model accuracy and reduce the number of parameters. Bilinear interpolation could process images smoother, making the processed images more realistic and clear. Finally, coordinate attention (CA) module was added to the encoder to introduce the attention mechanism, and the model was named CBPA-ENet. The CA mechanism not only focused on the channel information, but also keenly captured the orientation and position-sensitive information. The position information was embedded into the channel attention to globally encode the spatial information, capturing the channel information along one spatial direction while retaining the position information along the other spatial direction. The network could effectively enhance the attention to important regions in the image, and thus improve the quality and interpretability of segmentation results. [Results and Discussions] Trimming the third part resulted in a 28% decrease in FLOPs, a 41% decrease in parameters, and a 9 f/s increase in FPS. Improving the upsampling method to bilinear interpolation not only reduces the floating-point operation and parameters, but also slightly improves the segmentation accuracy of the model, increasing FPS by 4 f/s. Using P-Bottleneck instead of downsampling bottleneck structure and conventional bottleneck structure can reduce mIoU by only 0.04%, reduce FLOPs by 22%, reduce parameters by 16%, and increase FPS by 8 f/s. Adding CA mechanism to the encoder could only increase a small amount of FLOPs and parameters, improving the accuracy of the segmentation network. To verify the effectiveness of the improved segmentation algorithm, classic semantic segmentation networks of UNet, DeepLabV3+, PSPNet, and real-time semantic segmentation network LinkNet, DABNet were selected to train and validate. These six algorithms got quite high segmentation accuracy, among which UNet had the best mIoU and the mPA, but the model size was too large. The improved algorithm only accounts for 1% of the FLOPs and 0.41% of the parameters of UNet, and the mIoU and mPA were basically the same. Other classic semantic segmentation algorithms, such as DeepLabV3+, had similar accuracy to improved algorithms, but their large model size and slow inference speed were not conducive to embedded development. Although the real-time semantic segmentation algorithm LinkNet had a slightly higher mIoU, its FLOPs and parameters count were still far greater than the improved algorithm. Although the PSPNet model was relatively small, it was also much higher than the improved algorithm, and the mIoU and mPA were lower than the algorithm. The experimental results showed that the improved model achieved a mIoU of 98.61%. Compared with the original model, the number of parameters and FLOPs significantly decreased. Among them, the number of model parameters decreased by 51%, the FLOPs decreased by 49%, and the network operation speed increased by 38%. [Conclusions] The improved algorithm can accurately and quickly segment Chinese yam leaves, providing not only a more accurate means for determining Chinese yam phenotype data, but also a new method and approach for embedded research of Chinese yam. Using the model, the morphological feature data of Chinese yam leaves can be obtained more efficiently, providing a reliable foundation for further research and analysis.

Grape Recognition and Localization Method Based on 3C-YOLOv8n and Depth Camera | Open Access
LIU Chang, SUN Yu, YANG Jing, WANG Fengchao, CHEN Jin
2024, 6(6):  121-131.  doi:10.12133/j.smartag.SA202407008
Asbtract ( 202 )   HTML ( 24)   PDF (2020KB) ( 464 )  
Figures and Tables | References | Related Articles | Metrics

[Objective] Grape picking is a key link in increasing production. However, in this process, a large amount of manpower and material resources are required, which makes the picking process complex and slow. To enhance harvesting efficiency and achieve automated grape harvesting, an improved YOLOv8n object detection model named 3C-YOLOv8n was proposed, which integrates the RealSense D415 depth camera for grape recognition and localization. [Methods] The propoesed 3C-YOLOv8n incorporated a convolutional block attention module (CBAM) between the first C2f module and the third Conv module in the backbone network. Additionally, a channel attention (CA) module was added at the end of the backbone structure, resulting in a new 2C-C2f backbone network architecture. This design enabled the model to sequentially infer attention maps across two independent dimensions (channel and spatial), optimize features by considering relationships between channels and positional information. The network structure was both flexible and lightweight. Furthermore, the Content-aware ReAssembly of Features up sampling operator was implemented to support instance-specific kernels (such as deconvolution) for feature reconstruction with neighboring pixels, replacing the nearest neighbor interpolation operator in the YOLOv8n neck network. This enhancement increased the receptive field and guided the reconstruction process based on input features while maintaining low parameter and computational complexity, thereby forming the 3C-YOLOv8n model. The pyrealsense2 library was utilized to obtain pixel position information from the target area using the Intel RealSense D415 camera. During this process, the depth camera was used to capture images, and target detection algorithms were employed to pinpoint the location of grapes. The camera's depth sensor facilitated the acquisition of the three-dimensional point cloud of grapes, allowing for the calculation of the distance from the pixel point to the camera and the subsequent determination of the three-dimensional coordinates of the center of the target's bounding box in the camera coordinate system, thus achieving grape recognition and localization. [Results and Discussions] Comparative and ablation experiments were conducted. it was observed that the 3C-YOLOv8n model achieved a mean average precision (mAP) of 94.3% at an intersection ratio of 0.5 (IOU=0.5), surpassing the YOLOv8n model by 1%. The accuracy (P) and recall (R) rates were recorded at 91.6% and 86.4%, respectively, reflecting increases of 0.1% and 0.7%. The F1-Score also improved by 0.4%, demonstrating that the improved network model met the experimental accuracy and recall requirements. In terms of loss, the 3C-YOLOv8n algorithm exhibited superior performance, with a rapid decrease in loss values and minimal fluctuations, ultimately leading to a minimized loss value. This indicated that the improved algorithm quickly reached a convergence state, enhancing both model accuracy and convergence speed. The ablation experiments revealed that the original YOLOv8n model yielded a mAP of 93.3%. The integration of the CBAM and CA attention mechanisms into the YOLOv8n backbone resulted in mAP values of 93.5% each. The addition of the Content-aware ReAssembly of Features up sampling operator to the neck network of YOLOv8n produced a 0.5% increase in mAP, culminating in a value of 93.8%. The combination of the three improvement strategies yielded mAP increases of 0.3, 0.7, and 0.8%, respectively, compared to the YOLOv8n model. Overall, the 3C-YOLOv8n model demonstrated the best detection performance, achieving the highest mAP of 94.3%. The ablation results confirmed the positive impact of the proposed improvement strategies on the experimental outcomes. Compared to other mainstream YOLO series algorithms, all evaluation metrics showed enhancements, with the lowest missed detection and false detection rates among all tested algorithms, underscoring its practical advantages in detection tasks. [Conclusions] By effectively addressing the inefficiencies of manual labor, 3C-YOLOv8n network model not only enhances the precision of grape recognition and localization but also significantly optimizes overall harvesting efficiency. Its superior performance in evaluation metrics such as precision, recall, mAP, and F1-Score, alongside the lowest recorded loss values among YOLO series algorithms, indicates a remarkable advancement in model convergence and operational effectiveness. Furthermore, the model's high accuracy in grape target recognition not only lays the groundwork for automated harvesting systems but also enables the implementation of complementary intelligent operations.

Lightweight YOLOv8s-Based Strawberry Plug Seedling Grading Detection and Localization via Channel Pruning | Open Access
CHEN Junlin, ZHAO Peng, CAO Xianlin, NING Jifeng, YANG Shuqin
2024, 6(6):  132-143.  doi:10.12133/j.smartag.SA202408001
Asbtract ( 252 )   HTML ( 43)   PDF (3614KB) ( 401 )  
Figures and Tables | References | Related Articles | Metrics

[Objective] Plug tray seedling cultivation is a contemporary method known for its high germination rates, uniform seedling growth, shortened transplant recovery period, diminished pest and disease incidence, and enhanced labor efficiency. Despite these advantages, challenges such as missing or underdeveloped seedlings can arise due to seedling quality and environmental factors. To ensure uniformity and consistency of the seedlings, sorting is frequently necessary, and the adoption of automated seedling sorting technology can significantly reduce labor costs. Nevertheless, the overgrowth of seedlings within the plugs can effect the accuracy of detection algorithms. A method for grading and locating strawberry seedlings based on a lightweight YOLOv8s model was presented in this research to effectively mitigate the interference caused by overgrown seedlings. [Methods] The YOLOv8s model was selected as the baseline for detecting different categories of seedlings in the strawberry plug tray cultivation process, namely weak seedlings, normal seedlings, and plug holes. To improve the detection efficiency and reduce the model's computational cost, the layer-adaptive magnitude-based pruning(LAMP) score-based channel pruning algorithm was applied to compress the base YOLOv8s model. The pruning procedure involved using the dependency graph to derive the group matrices, followed by normalizing the group importance scores using the LAMP Score, and ultimately pruning the channels according to these processed scores. This pruning strategy effectively reduced the number of model parameters and the overall size of the model, thereby significantly enhancing its inference speed while maintaining the capability to accurately detect both seedlings and plug holes. Furthermore, a two-stage seedling-hole matching algorithm was introduced based on the pruned YOLOv8s model. In the first stage, seedling and plug hole bounding boxes were matched according to their the degree of overlap (Dp), resulting in an initial set of high-quality matches. This step helped minimize the number of potential matching holes for seedlings exhibiting overgrowth. Subsequently, before the second stage of matching, the remaining unmatched seedlings were ranked according to their potential matching hole scores (S), with higher scores indicating fewer potential matching holes. The seedlings were then prioritized during the second round of matching based on these scores, thus ensuring an accurate pairing of each seedling with its corresponding plug hole, even in cases where adjacent seedling leaves encroached into neighboring plug holes. [Results and Discussions] The pruning process inevitably resulted in the loss of some parameters that were originally beneficial for feature representation and model generalization. This led to a noticeable decline in model performance. However, through meticulous fine-tuning, the model's feature expression capabilities were restored, compensating for the information loss caused by pruning. Experimental results demonstrated that the fine-tuned model not only maintained high detection accuracy but also achieved significant reductions in FLOPs (86.3%) and parameter count (95.4%). The final model size was only 1.2 MB. Compared to the original YOLOv8s model, the pruned version showed improvements in several key performance metrics: precision increased by 0.4%, recall by 1.2%, mAP by 1%, and the F1-Score by 0.1%. The impact of the pruning rate on model performance was found to be non-linear. As the pruning rate increased, model performance dropped significantly after certain crucial channels were removed. However, further pruning led to a reallocation of the remaining channels' weights, which in some cases allowed the model to recover or even exceed its previous performance levels. Consequently, it was necessary to experiment extensively to identify the optimal pruning rate that balanced model accuracy and speed. The experiments indicated that when the pruning rate reached 85.7%, the mAP peaked at 96.4%. Beyond this point, performance began to decline, suggesting that this was the optimal pruning rate for achieving a balance between model efficiency and performance, resulting in a model size of 1.2 MB. To further validate the improved model's effectiveness, comparisons were conducted with different lightweight backbone networks, including MobileNetv3, ShuffleNetv2, EfficientViT, and FasterNet, while retaining the Neck and Head modules of the original YOLOv8s model. Results indicated that the modified model outperformed these alternatives, with mAP improvements of 1.3%, 1.8%, 1.5%, and 1.1%, respectively, and F1-Score increases of 1.5%, 1.8%, 1.1%, and 1%. Moreover, the pruned model showed substantial advantages in terms of floating-point operations, model size, and parameter count compared to these other lightweight networks. To verify the effectiveness of the proposed two-stage seedling-hole matching algorithm, tests were conducted using a variety of complex images from the test set. Results indicated that the proposed method achieved precise grading and localization of strawberry seedlings even under challenging overgrowth conditions. Specifically, the correct matching rate for normal seedlings reached 96.6%, for missing seedlings 84.5%, and for weak seedlings 82.9%, with an average matching accuracy of 88%, meeting the practical requirements of the strawberry plug tray cultivation process. [Conclusions] The pruned YOLOv8s model successfully maintained high detection accuracy while reducing computational costs and improving inference speed. The proposed two-stage seedling-hole matching algorithm effectively minimized the interference caused by overgrown seedlings, accurately locating and classifying seedlings of various growth stages within the plug tray. The research provides a robust and reliable technical solution for automated strawberry seedling sorting in practical plug tray cultivation scenarios, offering valuable insights and technical support for optimizing the efficiency and precision of automated seedling grading systems.

Detection Method of Apple Alternaria Leaf Spot Based on Deep-Semi-NMF | Open Access
FU Zhuojun, HU Zheng, DENG Yangjun, LONG Chenfeng, ZHU Xinghui
2024, 6(6):  144-154.  doi:10.12133/j.smartag.SA202409001
Asbtract ( 223 )   HTML ( 25)   PDF (1901KB) ( 107 )  
Figures and Tables | References | Related Articles | Metrics

[Objective] Apple Alternaria leaf spot can easily lead to premature defoliation of apple tree leaves, thereby affecting the quality and yield of apples. Consequently, accurately detecting of the disease has become a critical issue in the precise prevention and control of apple tree diseases. Due to factors such as backlighting, traditional image segmentation-based methods for detecting disease spots struggle to accurately identify the boundaries of diseased areas against complex backgrounds. There is an urgent need to develop new methods for detecting apple Alternaria leaf spot, which can assist in the precise prevention and control of apple tree diseases. [Methods] A novel detection method named Deep Semi-Non-negative Matrix Factorization-based Mahalanobis Distance Anomaly Detection (DSNMFMAD) was proposed, which combines Deep Semi-Non-negative Matrix Factorization (DSNMF) with Mahalanobis distance for robust anomaly detection in complex image backgrounds. The proposed method began by utilizing DSNMF to extract low-rank background components and sparse anomaly features from the apple Alternaria leaf spot images. This enabled effective separation of the background and anomalies, mitigating interference from complex background noise while preserving the non-negativity constraints inherent in the data. Subsequently, Mahalanobis distance was employed, based on the Singular Value Decomposition (SVD) feature subspace, to construct a lesion detector. The detector identified lesions by calculating the anomaly degree of each pixel in the anomalous regions. The apple tree leaf disease dataset used was provided by PaddlePaddle AI-Studio. Each image in the dataset has a resolution of 512×512 pixels, in RGB color format, and was in JPEG format. The dataset was captured in both laboratory and natural environments. Under laboratory conditions, 190 images of apple leaves with spot-induced leaf drop were used, while 237 images were collected under natural conditions. Furthermore, the dataset was augmented with geometric transformations and random changes in brightness, contrast, and hue, resulting in 1 145 images under laboratory conditions and 1 419 images under natural conditions. These images reflect various real-world scenarios, capturing apple leaves at different stages of maturity, in diverse lighting conditions, angles, and noise environments. This diversed dataset ensured that the proposed method could be tested under a wide range of practical conditions, providing a comprehensive evaluation of its effectiveness in detecting apple Alternaria leaf spot. [Results and Discussions] DSNMFMAD demonstrated outstanding performance under both laboratory and natural conditions. A comparative analysis was conducted with several other detection methods, including GRX (Reed-Xiaoli detector), LRX (Local Reed-Xiaoli detector), CRD (Collaborative-Representation-Based Detector), LSMAD (LRaSMD-Based Mahalanobis Distance Detector), and the deep learning model Unet. The results demonstrated that DSNMFMAD exhibited superior performance in the laboratory environment. The results demonstrated that DSNMFMAD attained a recognition accuracy of 99.8% and a detection speed of 0.087 2 s/image. The accuracy of DSNMFMAD was found to exceed that of GRX, LRX, CRD, LSMAD, and Unet by 0.2%, 37.9%, 10.3%, 0.4%, and 24.5%, respectively. Additionally, the DSNMFMAD exhibited a substantially superior detection speed in comparison to LRX, CRD, LSMAD, and Unet, with an improvement of 8.864, 107.185, 0.309, and 1.565 s, respectively. In a natural environment, where a dataset of 1 419 images of apple Alternaria leaf spot was analysed, DSNMFMAD demonstrated an 87.8% recognition accuracy, with an average detection speed of 0.091 0 s per image. In this case, its accuracy outperformed that of GRX, LRX, CRD, LSMAD, and Unet by 2.5%, 32.7%, 5%, 14.8%, and 3.5%, respectively. Furthermore, the detection speed was faster than that of LRX, CRD, LSMAD, and Unet by 2.898, 132.017, 0.224, and 1.825 s, respectively. [Conclusions] The DSNMFMAD proposed in this study was capable of effectively extracting anomalous parts of an image through DSNMF and accurately detecting the location of apple Alternaria leaf spot using a constructed lesion detector. This method achieved higher detection accuracy compared to the benchmark methods, even under complex background conditions, demonstrating excellent performance in lesion detection. This advancement could provide a valuable technical reference for the detection and prevention of apple Alternaria leaf spot.

Real-time Detection Algorithm of Expanded Feed Image on the Water Surface Based on Improved YOLOv11 | Open Access
ZHOU Xiushan, WEN Luting, JIE Baifei, ZHENG Haifeng, WU Qiqi, LI Kene, LIANG Junneng, LI Yijian, WEN Jiayan, JIANG Linyuan
2024, 6(6):  155-167.  doi:10.12133/j.smartag.SA202408014
Asbtract ( 393 )   HTML ( 56)   PDF (1858KB) ( 572 )  
Figures and Tables | References | Related Articles | Metrics

[Objective] During the feeding process of fish populations in aquaculture, the video image characteristics of floating extruded feed on the water surface undergo continuous variations due to a myriad of environmental factors and fish behaviors. These variations pose significant challenges to the accurate detection of feed particles, which is crucial for effective feeding management. To address these challenges and enhance the detection of floating extruded feed particles on the water surface, ,thereby providing precise decision support for intelligent feeding in intensive aquaculture modes, the YOLOv11-AP2S model, an advanced detection model was proposed. [Methods] The YOLOv11-AP2S model enhanced the YOLOv11 algorithm by incorporating a series of improvements to its backbone network, neck, and head components. Specifically, an attention for fine-grained categorization (AFGC) mechanism was introduced after the 10th layer C2PSA of the backbone network. This mechanism aimed to boost the model's capability to capture fine-grained features, which were essential for accurately identifying feed particles in complex environments with low contrast and overlapping objects. Furthermore, the C3k2 module was replaced with the VoV-GSCSP module, which incorporated more sophisticated feature extraction and fusion mechanisms. This replacement further enhanced the network's ability to extract relevant features and improve detection accuracy. To improve the model's detection of small targets, a P2 layer was introduced. However, adding a P2 layer may increase computational complexity and resource consumption, so the overall performance and resource consumption of the model must be carefully balanced. To maintain the model's real-time performance while improving detection accuracy, a lightweight VoV-GSCSP module was utilized for feature fusion at the P2 layer. This approach enabled the YOLOv11-AP2S model to achieve high detection accuracy without sacrificing detection speed or model lightweights, making it suitable for real-time applications in aquaculture. [Results and Discussions] The ablation experimental results demonstrated the superiority of the YOLOv11-AP2S model over the original YOLOv11 network. Specifically, the YOLOv11-AP2S model achieved a precision ( P) and recall ( R) of 78.70%. The mean average precision (mAP50) at an intersection over union (IoU) threshold of 0.5 was as high as 80.00%, and the F1-Score had also reached 79.00%. These metrics represented significant improvements of 6.7%, 9.0%, 9.4% (for precision, as previously mentioned), and 8.0%, respectively, over the original YOLOv11 network. These improvements showed the effectiveness of the YOLOv11-AP2S model in detecting floating extruded feed particles in complex environments. When compared to other YOLO models, the YOLOv11-AP2S model exhibits clear advantages in detecting floating extruded feed images on a self-made dataset. Notably, under the same number of iterations, the YOLOv11-AP2S model achieved higher mAP50 values and lower losses, demonstrating its superiority in detection performance. This indicated that the YOLOv11-AP2S model strikes a good balance between learning speed and network performance, enabling it to efficiently and accurately detect images of floating extruded feed on the water surface. Furthermore, the YOLOv11-AP2S model's ability to handle complex detection scenarios, such as overlapping and adhesion of feed particles and occlusion by bubbles, was noteworthy. These capabilities were crucial for accurate detection in practical aquaculture environments, where such challenges were common and can significantly impair the performance of traditional detection systems. The improvements in detection accuracy and efficiency made the YOLOv11-AP2S model a valuable tool for intelligent feeding systems in aquaculture, as it could provide more reliable and timely information on fish feeding behavior. Additionally, the introduction of the P2 layer and the use of the lightweight VoV-GSCSP module for feature fusion at this layer contributed to the model's overall performance. These enhancements enabled the model to maintain high detection accuracy while keeping computational costs and resource consumption within manageable limits. This was particularly important for real-time applications in aquaculture, where both accuracy and efficiency were critical for effective feeding management. [Conclusions] The successful application of the YOLOv11-AP2S model in detecting floating extruded feed particles demonstrates its potential to intelligent feeding systems in aquaculture. By providing accurate and timely information on fish feeding behavior, the model can help optimize feeding strategies, reduce feed waste, and improve the overall efficiency and profitability of aquaculture operations. Furthermore, the model's ability to handle complex detection scenarios and maintain high detection accuracy while keeping computational costs within manageable limits makes it a practical and valuable tool for real-time applications in aquaculture. Therefore, the YOLOv11-AP2S model holds promise for wide application in intelligent aquaculture management, contributing to the sustainability and growth of the aquaculture industry.

Research on the Spatio-temporal Characteristics and Driving Factors of Smart Farm Development in the Yangtze River Economic Belt | Open Access
GAO Qun, WANG Hongyang, CHEN Shiyao
2024, 6(6):  168-179.  doi:10.12133/j.smartag.SA202404005
Asbtract ( 218 )   HTML ( 25)   PDF (1099KB) ( 311 )  
Figures and Tables | References | Related Articles | Metrics

[Objective] In order to summarize exemplary cases of high-quality development in regional smart agriculture and contribute strategies for the sustainable advancement of the national smart agriculture cause, the spatiotemporal characteristics and key driving factors of smart farms in the Yangtze River Economic Belt were studied. [Methods] Based on data from 11 provinces (municipalities) spanning the years 2014 to 2023, a comprehensive analysis was conducted on the spatio-temporal differentiation characteristics of smart farms in the Yangtze River Economic Belt using methods such as kernel density analysis, spatial auto-correlation analysis, and standard deviation ellipse. Including the overall spatial clustering characteristics, high-value or low-value clustering phenomena, centroid characteristics, and dynamic change trends. Subsequently, the geographic detector was employed to identify the key factors driving the spatio-temporal differentiation of smart farms and to discern the interactions between different factors. The analysis was conducted across seven dimensions: special fiscal support, industry dependence, human capital, urbanization, agricultural mechanization, internet infrastructure, and technological innovation. [Results and Discussions] Firstly, in terms of temporal characteristics, the number of smart farms in the Yangtze River Economic Belt steadily increased over the past decade. The year 2016 marked a significant turning point, after which the growth rate of smart farms had accelerated noticeably. The development of the upper, middle, and lower reaches exhibited both commonalities and disparities. Specifically, the lower sub-regions got a higher overall development level of smart farms, with a fluctuating upward growth rate; the middle sub-regions were at a moderate level, showing a fluctuating upward growth rate and relatively even provincial distribution; the upper sub-regions got a low development level, with a stable and slow growth rate, and an unbalanced provincial distribution. Secondly, in terms of spatial distribution, smart farms in the Yangtze River Economic Belt exhibited a dispersed agglomeration pattern. The results of global auto-correlation indicated that smart farms in the Yangtze River Economic Belt tended to be randomly distributed. The results of local auto-correlation showed that the predominant patterns of agglomeration were H-L and L-H types, with the distribution across provinces being somewhat complex; H-H type agglomeration areas were mainly concentrated in Sichuan, Hubei, and Anhui; L-L type agglomeration areas were primarily in Yunnan and Guizhou. The standard deviation ellipse results revealed that the mean center of smart farms in the Yangtze River Economic Belt had shifted from Anqing city in Anhui province in 2014 to Jingzhou city in Hubei province in 2023, with the spatial distribution showing an overall trend of shifting southwestward and a slow expansion toward the northeast and south. Finally, in terms of key driving factors, technological innovation was the primary critical factor driving the formation of the spatio-temporal distribution pattern of smart farms in the Yangtze River Economic Belt, with a factor explanatory degree of 0.311 1. Moreover, after interacting with other indicators, it continued to play a crucial role in the spatio-temporal distribution of smart farms, which aligned with the practical logic of smart farm development. Urbanization and agricultural mechanization levels were the second and third largest key factors, with factor explanatory degrees of 0.292 2 and 0.251 4, respectively. The key driving factors for the spatio-temporal differentiation of smart farms in the upper, middle, and lower sub-regions exhibited both commonalities and differences. Specifically, the top two key factors driver identification in the upper region were technological innovation (0.841 9) and special fiscal support (0.782 3). In the middle region, they were technological innovation (0.619 0) and human capital (0.600 1), while in the lower region, they were urbanization (0.727 6) and technological innovation (0.425 4). The identification of key driving factors and the detection of their interactive effects further confirmed that the spatio-temporal distribution characteristics of smart farms in the Yangtze River Economic Belt were the result of the comprehensive action of multiple factors. [Conclusions] The development of smart farms in the Yangtze River Economic Belt is showing a positive momentum, with both the total number of smart farms and the number of sub-regions experiencing stable growth. The development speed and level of smart farms in the sub-regions exhibit a differentiated characteristic of "lower reaches > middle reaches > upper reaches". At the same time, the overall distribution of smart farms in the Yangtze River Economic Belt is relatively balanced, with the degree of sub-regional distribution balance being "middle reaches (Hubei province, Hunan province, Jiangxi province are balanced) > lower reaches (dominated by Anhui) > upper reaches (Sichuan stands out)". The coverage of smart farm site selection continues to expand, forming a "northeast-southwest" horizontal diffusion pattern. In addition, the spatio-temporal characteristics of smart farms in the Yangtze River Economic Belt are the result of the comprehensive action of multiple factors, with the explanatory power of factors ranked from high to low as follows: Technological innovation > urbanization > agricultural mechanization > human capital > internet infrastructure > industry dependence > special fiscal support. Moreover, the influence of each factor is further strengthened after interaction. Based on these conclusions, suggestions are proposed to promote the high-quality development of smart farms in the Yangtze River Economic Belt. This study not only provides a theoretical basis and reference for the construction of smart farms in the Yangtze River Economic Belt and other regions, but also helps to grasp the current status and future trends of smart farm development.

Authority in Charge: Ministry of Agriculture and Rural Affairs of the People’s Republic of China
Sponsor: Agricultural Information Institute, Chinese Academy of Agricultural Sciences
Editor-in-Chief: Chunjiang Zhao, Academician of Chinese Academy of Engineering.
ISSN 2097-485X(Online)
ISSN 2096-8094(Print)
CN 10-1681/S
CODEN ZNZHD7

Search by Issue
Search by Key words
Archive By Volume
Smart Agriculture Wechat
Visited
Links