Smart Agriculture ›› 2020, Vol. 2 ›› Issue (1): 1-22.doi: 10.12133/j.smartag.2020.2.1.201909-SA004
• Topic--Agricultural Remote Sensing and Phenotyping Information Acquisition Analysis • Previous Articles Next Articles
Received:
2019-09-24
Revised:
2019-12-07
Online:
2020-03-30
Published:
2020-04-17
About author:
Chenghai Yang(1962-), Research Agricultural Engineer, research interests: remote sensing for precision agriculture and pest management, Tel: 1-979-260-9530.
CLC Number:
Yang Chenghai. Airborne remote sensing systems for precision agriculture applications[J]. Smart Agriculture, 2020, 2(1): 1-22.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2020.2.1.201909-SA004
1 | Campbell J B. Introduction to Remote Sensing (3rd ed)[M]. New York: The Guilford Press, 2002. |
2 | Chen X, Ma J, Qiao H, et al. Detecting infestation of take-all disease in wheat using Landsat Thematic Mapper imagery[J]. International Journal of Remote Sensing, 2007, 28(22): 5183-5189. |
3 | Satellite Imaging Corporation[EB/OL]. [2020-1-11]. . |
4 | Planet Labs Inc[EB/OL]. [2020-1-11]. . |
5 | Yang C. High resolution satellite imaging sensors for precision agriculture[J]. Frontiers of Agricultural Science and Engineering, 2018, 5(4): 393-405. |
6 | Wikipedia[EB/OL]. [2020-1-11]. . |
7 | Federal Aviation Administration. Light sport aircraft[EB/OL]. [2019-9-6]. . |
8 | Zhao B, Zhang J, Yang C, et al. Rapeseed seedling stand counting and seeding performance evaluation at two early growth stages based on unmanned aerial vehicle imagery[J]. Frontiers in Plant Science, 2018, 9: 1362. |
9 | Holman F H, Riche A B, Michalski A, et al. High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing[J]. Remote Sensing, 2016, 8(12): 1031. |
10 | Varela S, Assefa Y, Prasad P V V, et al. Spatio-temporal evaluation of plant height in corn via unmanned aerial systems[J]. Journal of Applied Remote Sensing, 2017, 11(3): 36013. |
11 | Roth L H, Aasen A, Walter F, et al. Extracting leaf area index using viewing geometry effects - A new perspective on high-resolution unmanned aerial system photography[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 141: 161-175. |
12 | Bendig J, Yu K, Aasen H, et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 79-87. |
13 | Yue J, Yang G, Li C, et al. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models[J]. Remote Sensing, 2017, 9(7): no.708. |
14 | Kefauver S C, Vicente R, Vergara-Díaz O, et al. Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barley[J]. Frontiers in Plant Science, 2017, 8: no.1733. |
15 | Gong Y, Duan B, Fang S, et al. Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis[J]. Plant Methods, 2018, 14: 70. |
16 | Hassan M A, Yang M, Rasheed A, et al. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multispectral UAV platform[J]. Plant Science, 2019, 282: 95-103. |
17 | Zhang L, Zhang H, Niu Y, et al. Mapping maize water stress based on UAV multispectral remote sensing[J]. Remote Sensing, 2019, 11: no.605. |
18 | Torres-Sánchez J, López-Granados F, De Castro A I, et al. Configuration and specifications of an unmanned aerial vehicle (UAV) for early site-specific weed management[J]. PLoS ONE, 2013, 8(3): no.e58210. |
19 | Jiménez-Brenes F M, López-Granados F, Torres-Sánchez J, et al. Automatic UAV-based detection of Cynodon dactylon for site-specific vineyard management[J]. PLoS ONE, 2019, 14(6): no.e0218132. |
20 | Cao F, Liu F, Guo H, et al. Fast detection of Sclerotinia sclerotiorum on oilseed rape leaves using low-altitude remote sensing technology[J]. Sensors, 2018, 18(12): no. 4464. |
21 | Heim R H J, Wright I J, Scarth P, et al. Multispectral, aerial disease detection for myrtle rust (Austropuccinia psidii) on a lemon myrtle plantation[J]. Drones, 2019, 3: 25. |
22 | Caturegli L, Corniglia M, Gaetani M, et al. Unmanned aerial vehicle to estimate nitrogen status of turfgrasses[J]. PLoS ONE, 2016, 11(6): no.e0158268. |
23 | Vanegas F, Bratanov D, Powell K, et al. A novel methodology for improving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data[J]. Sensors, 2018, 18: no.260. |
24 | Federal Aviation Administration. Certificated remote pilots including commercial operates[EB/OL]. [2019-9-4]. . |
25 | Mausel P W, Everitt J H, Escobar D E, et al. Airborne videography: current status and future perspectives[J]. Phtotogrammetric Engineering & Remote Sensing, 1992, 58(8): 1189-1195. |
26 | King D J. Airborne multispectral digital camera and video sensors: a critical review of systems designs and applications[J]. Canadian Journal of Remote Sensing, 1995, 21(3): 245-273. |
27 | Moran M S, Inoue Y, Barnes E M. Opportunities and limitations for image-based remote sensing in precision crop management[J]. Remote Sensing of Environment, 1997, 61(3): 319-346. |
28 | Moran M S, Fitzgerald G, Rango A, et al. Sensor development and radiometric correction for agricultural applications[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(6): 705-718. |
29 | PinterJr P J, Hatfield J L, Schepers J S, et al. Remote sensing for crop management[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(6): 647-664. |
30 | Yang C, Odvody G N, Thomasson, J A, et al. Change detection of cotton root rot infection over 10-year intervals using airborne multispectral imagery[J]. Computers and Electronics in Agriculture, 2016, 123: 154-162. |
31 | Everitt J H, Escobar D E, Cavazos I, et al. A three-camera multispectral digital video imaging system[J]. Remote Sensing of Environment, 1995, 54(3): 333-337. |
32 | Escobar D E, Everitt J H, Noriega J R, et al. A twelve-band airborne digital video imaging system (ADVIS)[J]. Remote Sensing of Environment, 1998, 66(2): 122-128. |
33 | Gorsevski P V, Gessler P E. The design and the development of a hyperspectral and multispectral airborne mapping system[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(2): 184-192. |
34 | Yang C. A high resolution airborne four-camera imaging system for agricultural applications remote sensing[J]. Computers and Electronics in Agriculture, 2012, 88: 13-24. |
35 | Airborne Data Systems, Inc[EB/OL]. [2020-1-11]. . |
36 | OptechTeledyne[EB/OL]. [2020-1-11]. . |
37 | SystemsFLIR, Inc[EB/OL]. [2020-1-11]. . |
38 | ITRES Research Limited[EB/OL]. [2020-1-11]. . |
39 | Bayer B E. Color Imaging Array: US Patent 3971065[P]. 1976. |
40 | Hirakawa K, Wolfe P J. Spatio-spectral sampling and color filter array design[C]// In Single-Sensor Imaging: Methods and Applications for Digital Cameras, Lukac, R (ed), CRC Press, Boca Raton, Florida, USA, 2008. |
41 | Song X, Yang C, Wu M, et al. Evaluation of Sentinel-2A imagery for mapping cotton root rot[J]. Remote Sensing, 2017, 9(9): 906. |
42 | Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) [EB/OL]. [2020-1-11]. . |
43 | Yang C, Hoffmann W C. Converting aerial imagery to application maps[J]. Agricultural Aviation, 2016, 43(4): 72-74. |
44 | Westbrook J K, Ritchie S E, Yang C, et al. Airborne multispectral identification of individual cotton plants using consumer-grade cameras[J]. Remote Sensing Applications: Society and Environment, 2016, 4: 37-43. |
45 | Schiefer S, Hostert P, Damm A. Correcting brightness gradients in hyperspectral data from urban areas[J]. Remote Sensing of Environment, 2006, 101(1): 25-37. |
46 | Dehaan R L, Taylor G R. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization[J]. Remote Sensing of Environment, 2002, 80(3): 406-417. |
47 | Galvao L S, Ponzoni F J, Epiphanio J C N, et al. Sun and view angle effects on NDVI determination of land cover types in the Brazilian Amazon region with hyperspectral data[J]. International Journal of Remote Sensing, 2004, 25(10): 1861-1879. |
48 | Cocks T, Jenssen R, Stewart A, et al. The HyMAP airborne hyperspectral sensor: The system, calibration and performance[C]// 1st EARSeL Workshop on Imaging Spectroscopy, Univ Zurich, Remote Sensing Lab, Zurich, Switzerlands, 1998. |
49 | Yang C, Hoffmann W C. Low-cost single-camera imaging system for aerial applicators[J]. Journal of Applied Remote Sensing, 2015, 9: no.096064. |
50 | Green R O, Eastwood M L, Sarture C M, et al. Imaging Spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)[J]. Remote Sensing of Environment, 1998, 65(3): 227-248. |
51 | Spectral Imaging Ltd[EB/OL]. [2020-1-11]. . |
52 | PhotonicsHeadwall, Inc[EB/OL]. [2020-1-11]. . |
53 | Varvel G E, Schlemmer M R, Schepers J S. Relationship between spectral data from an aerial image and soil organic matter and phosphorus levels[J]. Precision Agriculture, 1999, 1(3): 291-300. |
54 | Yang C, Everitt J H. Relationships between yield monitor data and airborne multidate multispectral digital imagery for grain sorghum[J]. Precision Agriculture, 2002, 3(4): 373-388. |
55 | Inman D, Khosla R, Reich R, et al. Normalized difference vegetation index and soil color-based management zones in irrigated maize[J]. Agronomy Journal, 2008, 100(1): 60-66. |
56 | Sui R, Hartley B E, Gibson J M, et al. Yield estimate of biomass sorghum with aerial imagery[J]. Journal of Applied Remote Sensing, 2011, 5(1): no.053523. |
57 | Cohen Y, Alchanatis V, Saranga Y, et al. Mapping water status based on aerial thermal imagery: comparison of methodologies for upscaling from a single leaf to commercial fields[J]. Precision Agriculture, 2017, 18(5): 801-822. |
58 | Yang C, Martin D E. Integration of aerial imaging and variable rate technology for site-specific aerial herbicide application [J]. Transactions of the ASABE, 2017, 60(3): 635-644. |
59 | Backoulou G F, Elliott N C, Giles K L, et al. Processed multispectral imagery differentiates wheat crop stress caused by greenbug from other causes[J]. Computers and Electronics in Agriculture, 2015, 115: 34-39. |
60 | Yang C, Martin D E. Integration of aerial imaging and variable rate technology for site-specific aerial herbicide application [J]. Transactions of the ASABE, 2017, 60(3): 635-644. |
61 | Mulla D J. Twenty five years of remote sensing in precision agriculture-Key advances and remaining knowledge gaps[J]. Biosystems Engineering, 2013, 114 (4): 358-371. |
62 | Goel P K, Prasher S O, Landry J A, et al. Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing[J]. Transactions of the ASAE, 2003, 46(4): 1235-1246. |
63 | Zarco-Tejada, P J, Ustin, S L, et al. Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery[J]. Agronomy Journal, 2005, 97(3): 641-653. |
64 | Yang C, Everitt J H, Bradford J M. Airborne hyperspectral imagery and linear spectral unmixing for mapping variation in crop yield [J]. Precision Agriculture, 2007, 8(6): 279-296. |
65 | Fitzgerald G J, Maas S J, Detar W R. Spidermite detection in cotton using hyperspectral imagery and spectral mixture analysis [J]. Precision Agriculture, 2004, 5(3): 275-289. |
66 | Huang W, David W L, Niu Z, et al. Identification of yellow rust in wheat using in situ spectral reflectance measurements and airborne hyperspectral imaging[J]. Precision Agriculture, 2007, 8(4-5): 187-197. |
67 | Li H, Lee W S, Wang K, et al. Extended spectral angle mapping (ESAM) for citrus greening disease detection using airborne hyperspectral imaging[J]. Precision Agriculture, 2014, 15(2): 162-183. |
68 | MacDonald S L, Staid M, Staid M, et al. Remote hyperspectral imaging of grapevine leafroll-associated virus 3 in cabernet sauvignon vineyards[J]. Computers and Electronics in Agriculture, 2016, 130: 109-117. |
69 | Yang C, Anderson G L. Airborne videography to identify spatial plant growth variability for grain sorghum[J]. Precision Agriculture, 1999, 1(1): 67-79. |
70 | Yang C, Anderson G L. Mapping grain sorghum yield variability using airborne digital videography[J]. Precision Agriculture, 2000, 2(1): 7-23. |
71 | Yang C, Everitt J H, Bradford J M. Airborne hyperspectral imagery and yield monitor data for estimating grain sorghum yield variability[J]. Transactions of the ASAE, 2004, 47(3): 915-924. |
72 | Yang C, Everitt J H, Davis M R, et al. A CCD camera-based hyperspectral imaging system for stationary and airborne applications[J]. Geocarto International, 2003, 18(2): 71-80. |
73 | Smith L A, Thomson S J. GPS position latency determination and ground speed calibration for the Satloc Airstar M3[J].Applied Engineering in Agriculture, 2005, 21(5): 769-776. |
74 | Thomson S J, Smith L A, Hanks J E. Evaluation of application accuracy and performance of a hydraulically operated variable-rate aerial application system[J]. Transactions of the ASABE, 2009, 52(3): 715-722. |
[1] | Huang Yanbo. Perspectives and experiences on the development and innovation of agricultural aviation and precision agriculture from the Mississippi Delta and recommendations for China [J]. Smart Agriculture, 2019, 1(4): 12-30. |
[2] | Zhu Jiangpeng, Cen Haiyan, He Liwen, He Yong. Development and performance evaluation of a multi-rotor unmanned aircraft system for agricultural monitoring [J]. Smart Agriculture, 2019, 1(1): 43-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||