Smart Agriculture ›› 2021, Vol. 3 ›› Issue (4): 1-13.doi: 10.12133/j.smartag.2021.3.4.202106-SA001
• Topic--Agricultural Products Processing and Testing • Next Articles
LI Hongyue(), LI Qingluan, ZHENG Jianjun, LING Bo(
), WANG Shaojin(
)
Received:
2021-06-01
Revised:
2021-08-02
Online:
2021-12-30
Published:
2021-12-30
corresponding author:
LING Bo,WANG Shaojin
E-mail:1715820259@qq.com;6lb6lb@163.com;shaojinwang@nwafu.edu.cn
CLC Number:
LI Hongyue, LI Qingluan, ZHENG Jianjun, LING Bo, WANG Shaojin. Recent Advances on Application of Radio Frequency Heating in the Research of Post-Harvest Grain Storage and Processing[J]. Smart Agriculture, 2021, 3(4): 1-13.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2021.3.4.202106-SA001
Table1
Dielectric properties of post-harvest grain and their products and stored insect pests at 27.12 MHz
粮食种类 | 含水量/(w.b. %) | 温度/°C | 介电特性数据 | ||
---|---|---|---|---|---|
介电常数 | 介电损耗 | 穿透深度/cm | |||
小麦(锈扁谷盗成虫)[ | 15.0(49.0) | 15 | 4.0 | 0.1(8.0) | —— |
45 | 4.9 | 0.2 | —— | ||
75 | 6.0 | 0.6 | —— | ||
小麦粉(印度谷螟幼虫)[ | 12.6(74.0) | 25 | 5.6 | 0.5(211) | —— |
55 | 6.6 | 0.6 | —— | ||
85 | 23.5 | 9.74 | —— | ||
精米(米象成虫)[ | 11.4(47.0) | 25 | 8.8 | 0.6(48) | 1063 |
玉米粉(杂拟谷盗成虫)[ | 10.3(42.0) | 20 | 3.7 | 0.1(19) | 1083 |
80 | 8.4 | 0.7 | 289 | ||
豇豆(四纹豆象成虫)[ | 12.7(71.0) | 20 | 3.6 | 0.3 (185) | 1008 |
40 | 4.1 | 0.5 | 766 | ||
60 | 5.5 | 1.0 | 431 | ||
绿豆[ | 10.2 | 20 | 3.2 | 0.2 | 1075 |
40 | 3.5 | 0.3 | 1063 | ||
60 | 4.2 | 0.4 | 977 | ||
麦胚[ | 11.3 | 25 | 3.6 | 0.4 | 831 |
55 | 5.8 | 0.6 | 623 | ||
85 | 9.3 | 0.9 | 471 | ||
米糠[ | 10.4 | 25 | 2.8 | 0.2 | 1001 |
70 | 4.9 | 1.9 | 213 | ||
100 | 11.5 | 12 | 55 |
Table 2
Application of radio frequency heating technology in disinfestation of post-harvest grain and their products
粮食种类 | 主要研究结果 |
---|---|
小麦 | 射频加热至热点达80 °C,冷点处锈赤扁谷盗成虫完全死亡,幼虫在55~60 °C完全死亡。小麦发芽率随水分增加降低,面粉品质无显著变化[ |
射频加热至60 °C,谷蠹、赤拟谷盗、长角扁谷盗、玉米象成虫死亡率达90 %以上,小麦水分、淀粉含量、面筋值等品质指标无显著变化[ | |
稻谷 | 传送带模式下射频加热至54 °C后保温11 min,谷蠹成虫完全死亡,15 kW系统处理量313.6 kg/h,稻谷除水分降低外,其它物化指标均无显著变化[ |
传送带模式下射频加热至50 °C后保温6 min,米象成虫完全死亡,6 kW系统处理量224.8 kg/h,稻谷各项物化指标均无显著变化[ | |
精米 | 射频分别加热至45.8、56.9和70 °C,米蛾成虫、幼虫和卵完全死亡,精米主要化学成分、发芽率和感官品质无显著变化[ |
射频加热至50 °C后保温5 min,米象幼虫、卵和蛹完全死亡,精米表面无裂纹且感官品质无显著变化,但吸水性和黏度降低[ | |
糙米 | 传送带模式下射频加热至50 °C后保温6 min,米象成虫完全死亡,6 kW系统处理量247.3 kg/h,糙米各项物化指标均无显著变化[ |
米粉 | 射频加热至60 °C以上,米象成虫完全死亡,米粉感官品质无显著变化[ |
小扁豆 | 在传送带模式下经射频加热至60 °C后保温10 min,豆象成虫可完全死亡,处理量208 kg/h,水分、色泽、发芽率等品质指标无显著变化[ |
鹰嘴豆 | 射频加热至60 °C后保温10 min,豆象成虫完全死亡,鹰嘴豆水分、色泽、发芽率等品质指标无显著变化[ |
绿豆 | 射频加热至54 °C后保温 6 min,可完全杀死谷蠹成虫,绿豆主要化学组成、发芽率、色泽等品质指标无显著变化[ |
玉米 | 射频加热至60 °C,玉米象卵、幼虫、蛹和成虫完全死亡,玉米主要品质指标及蛋白结构无显著变化,且蛋白功能特性有所提高[ |
Table 3
Application of radio frequency heating technology in pasteurization of post-harvest grain and their products
粮食种类 | 主要研究结果 |
---|---|
玉米 | 射频加热至65 °C后保温10 min,黄曲霉菌减少3~4 log CFU/g,玉米色泽、发芽率无显著变化,超氧化物歧化酶、过氧化物酶等活性增加[ |
射频加热至70 °C后保温12 min,黄曲霉菌减少6 log CFU/g,玉米水分、蛋白、淀粉等主要化学组成、电导率、发芽率等指标受到显著影响[ | |
玉米粉 | 射频加热至85 °C后保温10 min,继续置于-20 °C下48 h,肠炎沙门氏菌和粪肠球菌分别减少6.59和4.79 log CFU/g[ |
小麦 | 射频加热至65 °C后保温10 min,黄曲霉菌减少2~3 log CFU/g,小麦色泽、发芽率受到显著影响,但超氧化物歧化酶、过氧化物酶等酶活增加[ |
小麦粉 | 射频加热至75 °C后自然冷却,水分活度0.25~0.65的面粉中肠炎沙门氏菌分别减少3~7 log CFU/g[ |
射频加热至80 °C后自然冷却,粪肠球菌减少1.2~4.6 log CFU/g。Bigelow模型是射频杀菌最优模型,其D值为8.3 min,z值为11.7 °C[ | |
混合谷物粉(Misugaru) | 射频加热120 s后,大肠杆菌、鼠伤寒沙门氏菌、蜡样芽孢杆菌的营养细胞分别减少4.68,3.89和4.54 log CFU/g。若采用射频加热120 s并协同1.9 kJ/m2紫外线处理3 min,可使大肠杆菌和鼠伤寒沙门氏菌分别减少5.39和4.76 log CFU/g[ |
稻谷 | 射频加热至70 °C后保温3 min,可有效杀灭储粮害虫与霉菌,稻谷淀粉酶活性有不同程度增加,黏度和发芽率无显著变化[ |
米粉 | 射频加热至100 °C后保温1 min,菌落总数低于检出限,米粉感官品质无显著变化[ |
大麦苗粉 | 射频加热至80 °C后自然冷却,菌落总数减少3.87 log CFU/g,大麦苗粉抗氧化特性、色泽、风味等指标受到显著影响,但优于相同温度下热风处理样品[ |
Table 4
Application of radio frequency heating technology in enzyme inactivation of post-harvest grain and their products
粮食种类 | 主要研究结果 |
---|---|
米糠 | 射频加热至92 °C后自然冷却,脂肪酶活性降低至18.2 %,米糠蛋白功能特性得以改善[ |
射频加热至120 °C后自然冷却,脂肪酶活性降低至1.3 %,但米糠色泽变深,营养物质有所损失[ | |
射频加热至100 °C后保温15 min,脂肪酶和脂肪氧化酶活性分别降低至19.2和5.5 %,米糠油品质无显著变化但蛋白质二级和三级结构发生改变[ | |
麦胚 | 射频加热至100 °C后保温15 min或110 °C后保温5 min,脂肪酶活性分别降低至18.2 %和22.5 %,麦胚物化特性优于蒸汽处理样品[ |
大豆 | 射频加热210 s,脂肪氧化酶活性降低至5.7 %,大豆蛋白的溶解性增加,豆奶风味中己醛与正己醇含量均显著减少[ |
射频加热300 s后,脂肪氧化酶、脲酶和胰蛋白酶抑制剂活性分别降低至4.8 %、6.6 %和10.6 %,大豆物化特性得以改善[ |
1 | 竹立家. 必须从国家战略的高度深刻认识粮食安全——对习近平总书记关于制止餐饮浪费行为重要指示精神的解读[J]. 理论探讨, 2020(5): 5-10. |
ZHU L. Deeply understand food security from the height of nationalstrategy—Interpretation of general secretary Xi Jinping's important instructions on stopping food waste[J]. Theoretical Investigation, 2020(5): 5-10. | |
2 | MACANA R J, BAIK O D. Disinfestation of insect pests in stored agricultural materials using microwave and radio frequency heating: A review[J]. Food Reviews International, 2018, 34(5): 483-510. |
3 | PIYASENA P, DUSSAULT C, KOUTCHMA T, et al. Radio frequency heating of foods: Principles, applications and related properties—A review[J]. Critical Reviews in Food Science and Nutrition, 2003, 43(6): 587-606. |
4 | 刘嫣红, 杨宝玲, 毛志怀. 射频技术在农产品和食品加工中的应用[J]. 农业机械学报, 2010, 41(8): 115-120. |
LIU Y, YANG B, MAO Z. Radio frequency technology and its application in agro-product and food processing[J]. Transactions of the CSAM, 2010, 41(8): 115-120. | |
5 | JIAO Y, TANG J, WANG Y, et al. Radio-frequency applications for food processing and safety[J]. Annual Review of Food Science and Technology, 2018, 9(1): 105-127. |
6 | AWUAH G, RAMASWAMY H, TANG J. Radio frequency heating in food processing: Principles and applications[M]. Boca Raton,Florida:CRC Press, 2015: 106-108. |
7 | ZHAO Y, FLUGSTAD B, KOLBE E, et al. Using capacitive (radio frequency) dielectric heating in food processing and preservation: A review[J]. Journal of Food Process Engineering, 2000, 23(1): 25-55. |
8 | MAO Y, WANG P, WU Y, HOU L, et al. Effects of various radio frequencies on combined drying and disinfestation treatments for in-shell walnuts[J]. LWT-Food Science and Technology, 2021, 144: ID 111246. |
9 | 周洪学. 射频系统加热性能及均匀性改善研究[D]. 杨凌: 西北农林科技大学, 2018. |
ZHOU H. Heating performance and uniformity improvement of radio frequency systems[D]. Yangling: Northwest A&F University, 2018. | |
10 | MOIRANGTHEM T T, MACANA R, BAIK O D. Characterization of 50-ohm radio frequency heating of bulk canola seeds (Brassica napus. L) in a tubular applicator with parallel electrodes and post-treatment quality[J]. Innovative Food Science & Emerging Technologies, 2020, 64: ID 102409. |
11 | 令博. 开心果采后射频杀虫技术及综合利用研究[D]. 杨凌: 西北农林科技大学, 2016. |
LING B. Studies on radio frequency disinfestation technology and comprehensive utilizations of postharvest pistachio[D]. Yangling: Northwest A&F University, 2016. | |
12 | ZHOU H, GUO C, WANG S. Performance comparison between the free running oscillator and 50Ω radio frequency systems[J]. Innovative Food Science & Emerging Technologies, 2017, 39: 171-178. |
13 | MACANA R J, MOIRANGTHEM T T, BAIK O D. 50-ohm RF technology based applicator design and fabrication for disinfestation of insect pests in stored grains[C]// 2018 ASABE Annual International Meeting. St. Joseph, MI, USA: ASABE, 2018. |
14 | CUI M, SUN W, XIA L, et al. Effect of radio frequency heating on the mortality of Rhizopertha dominica (F.) and its impact on grain quality[J]. Journal of Stored Products Research, 2020, 89: ID 101695. |
15 | ROUTRAY W, ORSAT V. Recent advances in dielectric properties—Measurements and importance[J]. Current Opinion in Food Science, 2018, 23: 120-126. |
16 | TIWARI G, WANG S, TANG J, et al. Analysis of radio frequency (RF) power distribution in dry food materials[J]. Journal of Food Engineering, 2011, 104(4): 548-556. |
17 | KRAUS M, HOLZER F, HOYER C, et al. Chemical-free pest control by means of dielectric heating with radio waves: Selective heating[J]. Chemical Engineering and Technology, 2018, 41(1): 116-123. |
18 | LIN B, WANG S. Dielectric properties, heating rate, and heating uniformity of wheat flour with added bran associated with radio frequency treatments[J]. Innovative Food Science & Emerging Technologies, 2020, 60: ID 102290. |
19 | SHRESTHA B L, BAIK O D. Multi-physics computer simulation of radio frequency heating to control pest insects in stored-wheat[J]. Engineering in Agriculture, Environment and Food, 2019, 12(1): 71-80. |
20 | SHRESTHA B L, BAIK O D. Dielectric behaviour of whole-grain wheat with temperature at 27.12 MHz: A novel use of a liquid dielectric test fixture for grains[J]. International Journal of Food Property, 2015, 18(1): 100-112. |
21 | SHRESTHA B L, BAIK O D. Radio frequency selective heating of stored-grain insects at 27.12MHz: A feasibility study[J]. Biosystems Engineering, 2013, 114(3): 195-204. |
22 | WANG S, TANG J, JOHNSON J A, et al. Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments[J]. Biosystems Engineering, 2003, 85(2): 201-212. |
23 | YANG C, ZHAO Y, TANG Y, et al. Radio frequency heating as a disinfestation method against Corcyra cephalonica and its effect on properties of milled rice[J]. Journal of Stored Products Research, 2018, 77: 112-121. |
24 | NELSON S O, BARTLEY P G, LAWRENCE K C. RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control[J]. Transactions of the ASAE, 1998, 41(3): 685-692. |
25 | OZTURK S, KONG F B, SINGH R K, et al. Radio frequency heating of corn flour: Heating rate and uniformity[J]. Innovative Food Science & Emerging Technologies, 2017, 44: 191-201. |
26 | NELSON S. RF and microwave permittivities of insects and some applications[C]// URSI EMTS International Symposium on Electromagnetic Theory. Pisa, Italy: Pisa University, 2004: 1224-1226. |
27 | JIAO S, JOHNSON J A, TANG J, et al. Dielectric properties of cowpea weevil, black-eyed peas and mung beans with respect to the development of radio frequency heat treatments[J]. Biosystems Engineering, 2011, 108(3): 280-291. |
28 | LING B, LYNG J G, WANG S. Radio-frequency treatment for stabilization of wheat germ: Dielectric properties and heating uniformity[J]. Innovative Food Science & Emerging Technologies, 2018, 48: 66-74. |
29 | LING B, LIU X, ZHANG L, et al. Effects of temperature, moisture, and metal salt content on dielectric properties of rice bran associated with radio frequency heating[J]. Scientific Reports, 2018, 8(1): 4427. |
30 | 严荣军. 储藏害虫热致死动力学与气调加热板加热均匀性研究[D]. 杨凌: 西北农林科技大学, 2015. |
YAN R. Thermal death kinetics of storage pests and heating uniformity of controlled atmosphere/heating block systems[D]. Yangling: Northwest A&F University, 2015. | |
31 | YAN R, HUANG Z, ZHU H, et al. Thermal death kinetics of adult Sitophilus oryzae and effects of heating rate on thermotolerance[J]. Journal of Stored Products Research, 2014, 59: 231-236. |
32 | HOU L, WU Y, WANG S. Thermal death kinetics of Cryptolestes pusillus (Schonherr), Rhyzopertha dominica (Fabricius), and Tribolium confusum (Jacquelin du Val) using a heating block system[J]. Insects, 2019, 10(5): 1-13. |
33 | YANG L, LI Z, MA W, et al. Thermal death kinetics of fifth-instar Corcyras cephalonica (Lepidoptera: Galleriidae)[J]. Journal of Insect Science, 2015, 15: ID 25843578. |
34 | LI W, WANG K, CHEN L, et al. Tolerance of Sitophilus zeamais (Coleoptera: Curculionidae) to heated controlled atmosphere treatments[J]. Journal of Stored Products Research, 2015, 62: 52-57. |
35 | JOHNSON J A, VALERO K A, WANG S, et al. Thermal death kinetics of red flour beetle (Coleoptera: Tenebrionidae)[J]. Journal of Economic Entomology, 2004, 97(6): 1868-1873. |
36 | JOHNSON J A, WANG S, TANG J. Thermal death kinetics of fifth-instar Plodia interpunctella (Lepidoptera: Pyralidae)[J]. Journal of Economic Entomology, 2003, 96(2): 519-524. |
37 | HUANG Z, MARRA F, WANG S J. A novel strategy for improving radio frequency heating uniformity of dry food products using computational modeling[J]. Innovative Food Science & Emerging Technologies, 2016, 34: 100-111. |
38 | JIAO Y, SHI H, TANG J, et al. Improvement of radio frequency (RF) heating uniformity on low moisture foods with Polyetherimide (PEI) blocks[J]. Food Research International, 2015, 74: 106-114. |
39 | 黄智. 大豆射频加热过程有限元模拟及均匀性优化研究[D]. 杨凌: 西北农林科技大学, 2018. |
HUANG Z. Finite element simulation and uniformity optimization for radio frequency heating process of soybeans[D]. Yangling: Northwest A&F University, 2018. | |
40 | HUANG Z, DATTA A, WANG S J. Modeling radio frequency heating of granular foods: Individual particle vs. effective property approach[J]. Journal of Food Engineering, 2018, 234: 24-40. |
41 | BEDANE T F, ERDOGDU F, LYNG J G, et al. Effects of geometry and orientation of food products on heating uniformity during radio frequency heating[J]. Food and Bioproducts Processing, 2021, 125: 149-160. |
42 | JIAO S, JOHNSON J A, TANG J, et al. Industrial-scale radio frequency treatments for insect control in lentils[J]. Journal of Stored Products Research, 2012, 48: 143-148. |
43 | 陈龙. 运动与搅拌对小麦射频加热均匀性影响研究[D]. 杨凌: 西北农林科技大学, 2016. |
CHEN L. Effects of conveyor movement and mixing on radio frequency (RF) heating uniformity in wheat[D]. Yangling: Northwest A&F University, 2016. | |
44 | ZHU H, LI D, LI S, et al. A novel method to improve heating uniformity in mid-high moisture potato starch with radio frequency assisted treatment[J]. Journal of Food Engineering, 2017, 206: 23-36 |
45 | HUANG Z, ZHANG B, MARRA F, et al. Computational modelling of the impact of polystyrene containers on radio frequency heating uniformity improvement for dried soybeans[J]. Innovative Food Science & Emerging Technologies, 2016, 33: 365-380. |
46 | YU D, SHRESTHA B L, BAIK O D. Temperature distribution in a packed-bed of canola seeds with various moisture contents and bulk volumes during radio frequency (RF) heating[J]. Biosystems Engineering, 2016, 148: 55-67. |
47 | PALAZOĞLU T K, MIRAN W. Experimental investigation of the combined translational and rotational movement on an inclined conveyor on radio frequency heating uniformity[J]. Innovative Food Science & Emerging Technologies, 2018, 47: 16-23. |
48 | CHEN L, HUANG Z, WANG K, et al. Simulation and validation of radio frequency heating with conveyor movement[J]. Journal of Electromagnetic Waves and Applications, 2016, 30(4): 473-491. |
49 | CHEN L, WANG K, LI W, et al. A strategy to simulate radio frequency heating under mixing conditions[J]. Computers and Electronics in Agriculture, 2015, 118(C): 100-110. |
50 | ZHOU H, WANG S. Developing a screw conveyor in radio frequency systems to improve heating uniformity in granular products[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(3): 174-179. |
51 | HOU L X, JOHNSON J A, WANG S J. Radio frequency heating for postharvest control of pests in agricultural products: A review[J]. Postharvest Biology and Technology, 2016, 113: 106-118. |
52 | SHI H, SUN Z, YAN Z, et al. Influence of electrode distance on heating behaviour associated to radio frequency processing of low moisture foods[J]. Acta Alimentaria, 2017, 46(4): 517-526. |
53 | HUANG Z, ZHU H, YAN R, et al. Simulation and prediction of radio frequency heating in dry soybeans[J]. Biosystems Engineering, 2015, 129: 34-47. |
54 | WANG S, LUECHAPATTANAPORN K, TANG J. Experimental methods for evaluating heating uniformity in radio frequency systems[J]. Biosystems Engineering, 2008, 100(1): 58-65. |
55 | ZHENG A J, ZHANG B, ZHOU L Y, et al. Application of radio frequency pasteurization to corn (Zea mays L.): Heating uniformity improvement and quality stability evaluation[J]. Journal of Stored Products Research, 2016, 68: 63-72. |
56 | ZHOU L, LING B, ZHENG A, et al. Developing radio frequency technology for postharvest insect control in milled rice[J]. Journal of Stored Products Research, 2015, 62: 22-31. |
57 | SONG X, MA B, KOU X, et al. Developing radio frequency heating treatments to control insects in mung beans[J]. Journal of Stored Products Research, 2020, 88: ID 101651. |
58 | SHRESTHA B L, YU D, BAIK O D. Elimination of cruptolestes ferrungineus S. in wheat by radio frequency dielectric heating at different moisture contents[J]. Progress in Electromagnetics Research, 2013, 139: 517-538. |
59 | 孙为伟, 曹阳, 刘璐, 等. 射频加热防治5种储粮害虫的初步研究[J]. 中国粮油学报, 2019, 34(5): 95-100. |
SUN W, CAO Y, LIU L, et al. Preliminary study on radio frequency control of 5 kinds of stored grain pests[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(5): 95-100. | |
60 | HOU L, LIU Q, WANG S. Efficiency of industrial-scale radio frequency treatments to control Rhyzopertha dominica (Fabricius) in rough, brown, and milled rice[J]. Biosystems Engineering, 2019, 186: 246-258. |
61 | ZHOU L, WANG S. Verification of radio frequency heating uniformity and Sitophilus oryzae control in rough, brown, and milled rice[J]. Journal of Stored Products Research, 2016, 65: 40-47. |
62 | ZHOU L, WANG S. Industrial-scale radio frequency treatments to control Sitophilus oryzae in rough, brown, and milled rice[J]. Journal of Stored Products Research, 2016, 68: 9-18. |
63 | JIAO S, SUN W, YANG T, et al. Investigation of the feasibility of radio frequency energy for controlling insects in milled rice[J]. Food and Bioprocess Technology, 2017, 10(4): 781-788. |
64 | LI Y, CHEN S, YAO M. Effects of radio frequency heating on disinfestation and pasteurization of rice flour[J]. Taiwanese Journal of Agricultural Chemistry and Food Science, 2015, 53(4): 125-134. |
65 | WANG S, TIWARI G, JIAO S, et al. Developing postharvest disinfestation treatments for legumes using radio frequency energy[J]. Biosystems Engineering, 2010, 105(3): 341-349. |
66 | HASSAN A, DVON HOERSTEN, AHMED I. Effect of radio frequency heat treatment on protein profile and functional properties of maize grain[J]. Food Chemistry, 2019, 271: 142-147. |
67 | JIAO S, ZHONG Y, DENG Y. Hot air-assisted radio frequency heating effects on wheat and corn seeds: Quality change and fungi inhibition[J]. Journal of Stored Products Research, 2016, 69: 265-271. |
68 | ZHENG A, ZHANG L, WANG S. Verification of radio frequency pasteurization treatment for controlling Aspergillus parasiticus on corn grains[J]. International Journal of Food Microbiology, 2017, 249: 27-34. |
69 | OZTURK S, LIU S, XU J, et al. Inactivation of Salmonella Enteritidis and Enterococcus faecium NRRL B-2354 in corn flour by radio frequency heating with subsequent freezing[J]. LWT-Food Science and Technology, 2019, 111: 782-789. |
70 | VILLA-ROJAS R, ZHU M J, MARKS B, et al. Radiofrequency inactivation of Salmonella Enteritidis PT 30 and Enterococcus faecium in wheat flour at different water activities[J]. Biosystems Engineering, 2017, 156: 7-16. |
71 | XU J, YANG R, JIN Y, et al. Modeling the temperature-dependent microbial reduction of Enterococcus faecium NRRL B-2354 in radio-frequency pasteurized wheat flour[J]. Food Control, 2020, 107: ID 106778. |
72 | JEONG K O, KIM S S, PARK S H, et al. Inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium, and Bacillus cereus in roasted grain powder by radio frequency heating[J]. Journal of Applied Microbiology, 2020, 129(5): 1227-1237. |
73 | 伍潇洁, 万云雷, 韩红霞, 等. 射频处理对稻谷贮藏品质的影响[J]. 食品科技, 2016, 41(6): 187-190. |
WU X, WANG Y, HAN H, et al. Effect of radio frequency on paddy storage quality[J]. Food Science and Technology, 2016, 41(6): 187-190. | |
74 | CAO X, ZHANG M, CHITRAKAR B, et al. Radiofrequency heating for powder pasteurization of barley grass: Antioxidant substances, sensory quality, microbial load and energy consumption[J]. Journal of the Science of Food and Agriculture, 2019, 99(9): 4460-4467. |
75 | 于殿宇, 郝凯越, 程杰, 等. 射频处理提高米糠稳定性及其对品质的影响[J]. 食品科学, 2020, 41(20): 20-26. |
YU D, HAO K, CHENG J, et al. Radio frequency improves the stability and quality of rice bran[J]. Food Science and Technology, 2020, 41(20): 20-26. | |
76 | 史乐伟, 王珂, 邓红, 等. 射频加热灭酶处理对米糠稳定性和品质的影响[J]. 食品工业科技, 2014, 35(12): 113-117. |
SHI L, WANG K, DENG H, et al. Effect of lipase deactivation through radio frequency on therice bran's quality and stability[J]. Science and Technology of Food Industry, 2014, 35(12): 113-117. | |
77 | LING B, LYNG J, WANG S. Effects of hot air-assisted radio frequency heating on enzyme inactivation, lipid stability and product quality of rice bran[J]. LWT-Food Science and Technology, 2018, 91: 453-459. |
78 | LING B, OUYANG S, WANG S. Effect of radio frequency treatment on functional, structural and thermal behaviors of protein isolates in rice bran[J]. Food Chemistry, 2019, 289: 537-544. |
79 | LING B, OUYANG S, WANG S. Radio-frequency treatment for stabilization of wheat germ: Storage stability and physicochemical properties[J]. Innovative Food Science & Emerging Technologies, 2019, 52: 158-165. |
80 | JIANG Y, WANG S, HE F, et al. Inactivation of lipoxygenase in soybean by radio frequency treatment[J]. International Journal of Food Science and Technology, 2018, 53(12): 2738-2747. |
81 | JIANG Y M, LI L, HE F, et al. Highly effective inactivation of anti‐nutritional factors (lipoxygenase, urease and trypsin inhibitor) in soybean by radio frequency treatment[J]. International Journal of Food Science & Technology, 2020, 56(1): 93-102. |
82 | 谢永康, 林雅文, 朱广飞, 等. 基于加热均匀性的射频干燥系统结构优化与试验[J]. 农业工程学报, 2018, 34(5): 248-255. |
XIE Y, LIN Y, ZHU G, et al. Structure optimization and experiment of radio frequency dryer based on heating uniformity[J]. Transactions of the CSAE, 2018, 34(5): 248-255. | |
83 | IFTIKHAR F, HUSSAIN S Z, NASEER B, et al. Investigations on the process and product parameters of radio frequency-induced accelerated aged paddy[J]. Journal of Food Process Engineering, 2020,43(11): ID e13521. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||