1 |
ZHOU Q, ZHANG F, JI S, et al. Abscisic acid accelerates postharvest blueberry fruit softening by promoting cell wall metabolism[J]. Hortic-Amsterdam, 2021, 288: ID 110325.
|
2 |
SHIBATA M, COELHO C, GARIGHAN D, et al. Seed development of Araucaria angustifolia: Plant hormones and germin ability in 2 years of seeds production[J]. New Forests, 2021, 52 (5): 759-775.
|
3 |
SIRKO A, WAWRZYNSKA A, BRZYWCZY J, et al. Control of ABA signaling and crosstalk with other hormones by the selective degradation of pathway components[J]. International Journal of Molecular Sciences, 2021, 22 (9): ID 4638.
|
4 |
ZHOU G, LUO Y, XU Q, et al. Peptide-capped gold nanoparticle for colorimetric immunoassay of conjugated abscisic acid[J]. Acs Applied Materials Interfaces, 2021, 4(9): 5010-5015.
|
5 |
WANG S, ZHANG H, ZEPHANIA B, et al. A multi-channel localized surface plasmon resonance system for absorptiometric determination of abscisic acid by using gold nanoparticles functionalized with a polyadenine-tailed aptamer[J]. Microchimica Acta, 2020, 187 (1): ID 20.
|
6 |
YAN S, GUO L, WU C, et al. Simultaneous determination of three kinds of endogenous hormones content in seeds of post-harvest Yali pear by high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2010, 38 (6): 843-847.
|
7 |
LI Y, XIA K, WANG R, et al. An impedance immunosensor for the detection of the phytohormone abscisic acid[J]. Analytical and Bioanalytical Chemistry, 2008, 391 (8): 2869-2874.
|
8 |
FU J, SUN X, WANG J, et al. Progress in quantitative analysis of plant hormones[J]. Chinese Science Bulletin, 2011, 56 (4-5): 355-366.
|
9 |
WANG P, SUN Y, LI X, et al. Recent advances in metal organic frameworks based surface enhanced Raman scattering substrates: Synthesis and applications[J]. Molecules, 3021, 26 (1): ID 209.
|
10 |
DE SOUZA M, OTERO J, LOPEZ-TOCON I. Comparative performance of citrate, borohydride, hydroxylamine and beta-cyclodextrin silver sols for detecting ibuprofen and caffeine pollutants by means of surface-enhanced Raman spectroscopy[J]. Nanoterials, 2020, 10(12): ID 2339.
|
11 |
MOSKOVITS M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals[J]. Journal of Physics and Chemistry of Solids, 1978, 69(4): 4159-4162.
|
12 |
MOSKOVITS M. How the localized surface plasmon became linked with surface-enhanced Raman spectroscopy[J]. Notes and Records of the Royal Society, 2012, 66(2): 195-203.
|
13 |
PETTINGER B, WENNING U, WETZEL H. Surface plasmon enhanced Raman scattering frequency and angular resonance of Raman scattered light from Pyridine on Au, Ag and Cu electrodes[J]. Surface Science, 1980, 101(1-3): 409-416.
|
14 |
BOYACK R, LE RU E. Investigation of particle shape and size effects in SERS using T-matrix calculations[J]. Physical Chemistry Chemical Physics, 2009, 11(34): 7395-7405.
|
15 |
QU L, GENG Y, BAO Z, et al. Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl [J]. Microchimica Acta, 2016, 183(4): 1307-1313.
|
16 |
LIU J, WHITE I, DEVOE D. Nanoparticle-functionalized porous polymer monolith detection elements for surface-enhanced Raman scattering[J]. Analytical Chemistry, 2011, 83(6): 2119-2124.
|
17 |
MAKAM P, SHILPA R, KANDJANI A, et al. SERS and fluorescence-based ultrasensitive detection of mercury in water[J]. Biosensors Bioelectronics, 2018, 100: 556-564.
|
18 |
LI J, ZHANG Y, DING S, et al. Core-shell nanoparticle-enhanced Raman spectroscopy[J]. Chemical Reviews, 2017, 117(7): 5002-5069.
|
19 |
MAN T, LAI W, XIAO M, et al. A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy[J]. Biosensors Bioelectronics, 2019, 147: ID 111742.
|
20 |
GROZIO A, GONZALEZ V, MILLO E, et al. Selection and characterization of single stranded DNA aptamers for the hormone abscisic acid[J]. Nucleic Acid Therapeutics, 2012, 23 (5): 322-331.
|
21 |
张燕燕, 李冬贤, 马刘正, 等. 植物激素脱落酸分子的光谱与结构研究: 理论与实验[J]. 光谱学与光谱分析, 2021, 41(9): 2859-2865.
|
|
ZHANG Y, LI D, MA L, et al. Spectroscopic and structural studies of plant hormone abscisic acid molecules: Theory and experiment[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2859-2865.
|
22 |
ZHANG Y, ZHANG H, LI D, et al. Surface-enhanced Raman spectroscopy for the quantitative detection of abscisic acid in wheat leaves using silver coated gold nanocomposites[J]. Spectroscopy Letters, 2021, 54(10): 732-741.
|
23 |
ZHOU Z, XIAO R, CHENG S, et al. A universal SERS-label immunoassay for pathogen bacteria detection based on Fe3O4@Au-aptamer separation and antibody-protein a orientation recognition[J]. Analytical Chimica Acta, 2021, 1160: ID 338421.
|