1 精准农业航空概述
2 无人机农业遥感系统
2.1 无人机低空遥感影像采集系统
2.2 无人机遥感图像解译方法
3 无人机遥感在农作物病虫草害监测研究进展
图7 2003-2018年期间无人机遥感农作物病虫草害科技论文数量Fig. 7 Comparison of the number of scientific papers on crop diseases, insects and weeds by UAV remote sensing during 2003-2018 |
无人机农业遥感在农作物病虫草害诊断应用研究进展
兰玉彬(1961-),男,博士,教授,欧洲科学、艺术与人文学院院士,格鲁吉亚国家科学院外籍院士,研究方向:精准农业航空,Email:ylan@scau.edu.cn。 |
收稿日期: 2019-04-01
要求修回日期: 2019-04-18
网络出版日期: 2019-04-30
基金资助
广东省重点领域研发计划项目(2019B020214003)
国家自然科学基金(61675003)
国家重点研发计划项目(2016YFD0200700)
广东省教育厅平台建设项目(2015KGJHZ007)
广东省领军人才项目(2016LJ06G689)
广东省省级科技计划项目(2017B010117010)
广东大学生科技创新培育(pdjh2019b007)
版权
Advances in diagnosis of crop diseases, pests and weeds by UAV remote sensing
Received date: 2019-04-01
Request revised date: 2019-04-18
Online published: 2019-04-30
Copyright
农田作物信息的快速获取与解析是开展精准农业实践的前提和基础。根据农作物病虫草害的实际程度进行变量喷施和作业管理,可减少农业生产成本、优化作物栽培、提高农作物产量和品质,从而实现农业精准管理。近年来,随着无人机产业的快速发展,无人机农业遥感技术因其空间分辨率高、时效性强和成本低等特点,在农作物病虫草害监测应用中发挥了重要作用。本文首先介绍了精准农业航空的基本思想与系统组成和无人机遥感在精准农业航空的地位。接着探讨了无人机农业遥感系统常见的成像方式和遥感影像解析方法,并阐述了国内外无人机农业遥感技术在农作物病虫草害检测研究的最新进展。最后总结了无人机农业遥感技术发展至今面临的挑战并展望了未来的发展方向。本文将为开展无人机农业遥感技术在精准农业航空领域的研究提供理论参考和技术支撑。
兰玉彬 , 邓小玲 , 曾国亮 . 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业, 2019 , 1(2) : 1 -19 . DOI: 10.12133/j.smartag.2019.1.2.201904-SA003
Rapid acquisition and analysis of crop information is the precondition and basis for carrying out precision agricultural practice. Variable spraying and agricultural operation management based on the actual degree of crop diseases, pests and weeds can reduce the cost of agricultural production, optimize crop cultivation, improve crop yield and quality, and thus achieve precise agricultural management. In recent years, with the rapid development of UAV industry, UAV agricultural remote sensing technologies have played an important role in monitoring crop diseases, insects and weeds because of high spatial resolution, strong timeliness and low cost. Firstly, this research introduces the basic idea and system composition of precision agricultural aviation, and the status of UAV remote sensing in precision agricultural aviation. Then, the common UAV remote sensing imaging and interpreting methods were discussed, and the progress of UAV agricultural remote sensing technologies in detecting crop diseases, pests and weeds were respectively expounded. Finally, the challenges in the development of UAV agricultural remote sensing technologies nowadays were summarized, and the future development directions of UAV agricultural remote sensing were prospected. This research can provide theoretical references and technical supports for the development of UAV remote sensing technology in the field of precision agricultural aviation.
图7 2003-2018年期间无人机遥感农作物病虫草害科技论文数量Fig. 7 Comparison of the number of scientific papers on crop diseases, insects and weeds by UAV remote sensing during 2003-2018 |
[1] |
黄文江, 刘林毅, 董莹莹 , 等. 基于遥感技术的作物病虫害监测研究进展[J]. 农业工程技术, 2018,38(09):39-45.
|
[2] |
张竞成, 袁琳, 王纪华 , 等. 作物病虫害遥感监测研究进展[J]. 农业工程学报, 2012,28(20):1-11.
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
纪景纯, 赵原, 邹晓娟 , 等. 无人机遥感在农田信息监测中的应用进展[J]. 土壤学报, 2019: 1-13.
|
[8] |
邓小玲, 孔晨, 吴伟斌 , 等. 基于主成分分析和BP神经网络的柑橘黄龙病诊断技术[J]. 光子学报, 2014,43(04):16-22.
|
[9] |
高林, 杨贵军, 于海洋 , 等. 基于无人机高光谱遥感的冬小麦叶面积指数反演[J]. 农业工程学报, 2016,32(22):113-120.
|
[10] |
|
[11] |
易兴松, 兰安军, 文锡梅 , 等. 基于ASD 和 GaiaSky-mini 的农田土壤重金属污染监测[J]. 生态学杂志, 2018,37(6):1781-1788.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
赵一鸣, 李艳华, 商雅楠 , 等. 激光雷达的应用及发展趋势[J]. 遥测遥控, 2014,35(05):4-22.
|
[16] |
|
[17] |
杨凡 . 基于无人机激光雷达和高光谱的冬小麦生物量反演研究[D]. 西安: 西安科技大学, 2017.
|
[18] |
|
[19] |
周梦维, 柳钦火, 刘强 , 等. 机载激光雷达的作物叶面积指数定量反演[J]. 农业工程学报, 2011,27(04):207-213.
|
[20] |
关泽群 . 遥感图像解译[M]. 武汉大学出版社, 2007.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
苏伟, 郭皓, 赵冬玲 , 等. 基于优化PROSAIL叶倾角分布函数的玉米LAI反演方法[J]. 农业机械学报, 2016,47(03):234-241.
|
[25] |
|
[26] |
|
[27] |
|
[28] |
兰玉彬, 朱梓豪, 邓小玲 , 等. 基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类[J]. 农业工程学报, 2019,35(3):92-100.
|
[29] |
|
[30] |
罗菊花, 黄文江 . 基于PHI影像敏感波段组合的冬小麦条锈病遥感监测研究[J]. 光谱学与光谱分析, 2010,30(01):184-187.
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
王震, 褚桂坤, 张宏建 , 等. 基于无人机可见光图像Haar-like特征的水稻病害白穂识别[J]. 农业工程学报, 2018,34(20):73-82.
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
吴才聪, 胡冰冰, 赵明 , 等. 基于无人机影像和半变异函数的玉米螟空间分布预报方法[J]. 农业工程学报, 2017,33(9):84-91.
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
王术波, 韩宇, 陈建 , 等. 基于深度学习的无人机遥感生态灌区杂草分类[J]. 排灌机械工程学报, 2018,36(11):1137-1141.
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
刘忠, 万炜, 黄晋宇 , 等. 基于无人机遥感的农作物长势关键参数反演研究进展[J]. 农业工程学报, 2018,34(24):60-71.
|
[69] |
PARROT BLUEGRASS FIELDS, The end-to-end drone solution for agriculture[DB/OL]. [2019-4-22] https://www.parrot.com/business-solutions-us/parrot-professional/parrot-bluegrass#actionable-in-field-insights-with-parrotfields-mobile-app.
|
/
〈 | 〉 |