1 引言
2 作业环境及对象感知探测
2.1 前端作物长势信息智能探测
2.2 农田环境的动态感知
3 精准施药过程建模与优化控制
3.1 雾滴沉积运动建模
图 6 高精度格式CFD模拟旋翼翼尖涡Fig. 6 CFD predicted phase-averaged vorticity contours (along with velocity vectors) |
智慧农业 >
2019 , Vol. 1 >Issue 2: 20 - 33
DOI: https://doi.org/10.12133/j.smartag.2019.1.2.201812-SA025
智能化无人机植保作业关键技术及研究进展
徐 旻(1979-),男,博士,副研究员,研究方向:精准农业技术,飞行器导航控制与智能控制,Email:xum@nercita.org.cn。 |
收稿日期: 2018-12-31
要求修回日期: 2019-04-02
网络出版日期: 2019-04-30
基金资助
国家自然科学基金项目(31771674)
北京市农林科学院2018创新能力建设专项(KJCX20180424)
北京市农林科学院2016青年科研基金(QNJJ201632)
版权
Key technology analysis and research progress of UAV intelligent plant protection
Received date: 2018-12-31
Request revised date: 2019-04-02
Online published: 2019-04-30
Copyright
搭载高性能传感器和施药装备的农业植保无人机系统是精准农业领域具有代表性的智能装备之一。本研究首先从前端田间作业环境动态感知技术出发,阐述了无人机光谱成像遥感、多传感器融合的SLAM实时环境建模等技术在无人机植保作业方面的应用情况;然后对精准施药过程建模与优化控制有关的前沿技术进行了分析,包括旋翼下方风场结构演化及雾滴沉积过程仿真建模、多区域全覆盖条件下的智能作业路径规划、精准变量施药控制等;最后论述了作业效果评估与过程监管相关技术的发展现状,包括施药作业质量评价方法、基于云平台数据管理的全过程可视化监管等。在总结现有技术发展现状基础上,对未来智能化无人机植保关键技术发展趋势进行了预测,阐明了光谱图像获取与计算智能的深度学习识别聚类、基于高精度雾滴谱和风场模型预测的精准变量施药作业路径规划、基于传感器实时数据的作业质量评估和作业监管等新技术手段,将在遥感信息反演、药液飘移抑制、作业效率优化、施药过程管控等方面带来革命性的进步,使植保作业数据化、透明化,全过程可观化可控制,推动农业生产管理从机械化向智能化和智慧化迈进。
徐旻 , 张瑞瑞 , 陈立平 , 唐青 , 徐刚 . 智能化无人机植保作业关键技术及研究进展[J]. 智慧农业, 2019 , 1(2) : 20 -33 . DOI: 10.12133/j.smartag.2019.1.2.201812-SA025
UAV plant protection operation faces very complicated environmental conditions. On one hand, its ultra low altitude operations are vulnerable to ground structures and basic hydropower facilities; on the other hand, the effectiveness of plant protection operation is strong, and it is necessary to spray the pesticides to the specific parts of crops at the prescribed time so as to ensure good pesticide application effect. At present, UAV plant protection technology mainly refers to the existing mature technology and flight platform in general aviation field to basically "fly and spray". However, the lack of penetrating research and theoretical guidance on environmental perception in farmland operation, the movement mechanism of droplets under the rotor airflow, and the penetrability of the droplet to different crops canopy lead to low penetration rate of the UAV plant protection operation, easy drifting, frequent accidents, large damage probability and low comprehensive operational efficiency. Benefiting from the breakthroughs in artificial intelligence, parallel computing technology and intelligent hardware, the UAV plant protection technology is developing in the direction of intellectualization, systematization and precision. The real-time perception of the environment under non established conditions, intelligent job decision method based on intelligent recognition of crop diseases and pests, the control of the toward-target pesticide spraying control based on the variable of wind field droplet deposition model and the data based job evaluation system have gradually become the key technology of the UAV intelligent plant protection. The manuscript analyzed and summarized the research status and technical achievements in the field of UAV intelligent plant protection from the field information perception, the modeling and optimization control of accurate pesticide application, the evaluation and monitoring of the operation effect. Based on the existing research, the research also predicted the development trend of the key technologies of intelligent UAV plant protection in the future. The clustering method of hyper-spectral image acquisition and computational intelligence based deep learning recognition will become the key technology for real-time and efficient acquisition of crop target information in plant protection work, which greatly improves the accuracy of remote sensing information inversion recognition; machine vision and multi machine cooperative sensing technology can acquire dynamic information of field operation at multiple levels and time; the high precision droplet spectrum control technology independently controlled by nozzle design and the precision variable spraying control technology based on the wind field model can further improve the droplet deposition effect and reduce the liquid drifting; the breakthrough of high accuracy mesh solution technology will change the prediction mode of droplet drift from artificial experience judgment to computer simulation and numerical deduction; the job path planning technology will greatly improve the efficiency of multi machine and multi area operation and reduce the distance of invalid operation; the job quality evaluation based on the real-time data of the sensor and the operation supervision system of large data technology will replace people to effectively control the process of the UAV plant protection operation, achieve data and transparency of plant protection, and ensure the process is observable and controllable.
Key words: UAV; plant protection; intelligence; sensing; spraying
图 6 高精度格式CFD模拟旋翼翼尖涡Fig. 6 CFD predicted phase-averaged vorticity contours (along with velocity vectors) |
[1] |
陈晓明, 王程龙, 薄瑞 . 中国农药使用现状及对策建议[J]. 农药科学与管理, 2016(2):4-8.
|
[2] |
杨陆强, 果霖, 朱加繁 , 等. 我国农用无人机发展概况与展望[J]. 农机化研究, 2017,39(8):6-11.
|
[3] |
娄尚易, 薛新宇, 顾伟 , 等. 农用植保无人机的研究现状及趋势[J]. 农机化研究, 2017(12):1-6.
|
[4] |
周志艳, 臧英, 罗锡文 , 等. 中国农业航空植保产业技术创新发展战略[J]. 农业技术与装备, 2014(5):19-25.
|
[5] |
尹选春, 兰玉彬, 文晟 , 等. 日本农业航空技术发展及对我国的启示[J]. 华南农业大学学报, 2018,39(02):1-8.
|
[6] |
|
[7] |
高林, 杨贵军, 于海洋 , 等. 基于无人机高光谱遥感的冬小麦叶面积指数反演[J]. 农业工程学报, 2016,32(22):113-120.
|
[8] |
刘建刚, 赵春江, 杨贵军 , 等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016,32(24):98-106.
|
[9] |
|
[10] |
高林, 杨贵军, 李红军 , 等. 基于无人机数码影像的冬小麦叶面积指数探测研究[J]. 中国生态农业学报, 2016,24(9):1254-1264.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
孙钰, 周焱, 袁明帅 , 等. 基于深度学习的森林虫害无人机实时监测方法[J]. 农业工程学报, 2018,34(21):82-89.
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
秦维彩 . 单旋翼植保无人机喷雾参数优化研究[D]. 镇江:江苏大学, 2017.
|
[39] |
王大帅, 张俊雄, 李伟 , 等. 植保无人机动态变量施药系统设计与试验[J]. 农业机械学报, 2017,48(5):86-93.
|
[40] |
王昌陵, 宋坚利, 何雄奎 , 等. 植保无人机飞行参数对施药雾滴沉积分布特性的影响[J]. 农业工程学报, 2017,33(23):109-116.
|
[41] |
王玲 . 多旋翼植保无人机低空雾滴沉积规律及变量喷施测控技术[D]. 北京:中国农业大学, 2017.
|
[42] |
王玲, 兰玉彬 ,
|
[43] |
茹煜, 金兰, 周宏平 , 等. 航空施药旋转液力雾化喷头性能试验[J]. 农业工程学报, 2014,30(3):50-55.
|
[44] |
樊荣, 杨福增 . 植保常用扇形雾喷头系列型谱模型研究[J]. 山西农业大学学报(自然科学版), 2016,36(7):524-528.
|
[45] |
刘武兰, 周志艳, 陈盛德 , 等. 航空静电喷雾技术现状及其在植保无人机中应用的思考[J]. 农机化研究, 2018,40(5):1-9.
|
[46] |
王士林, 何雄奎, 宋坚利 , 等. 双极性接触式航空机载静电喷雾系统荷电与喷雾效果试验[J]. 农业工程学报, 2018,34(7):82-89.
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
尧李慧, 蔡晓华, 田雷 , 等. 自走式智能牛舍清洁机器人路径设计与研究[J]. 农机化研究, 2018,40(1):51-56.
|
[52] |
|
[53] |
徐博, 陈立平, 谭彧 , 等. 基于无人机航向的不规则区域作业航线规划算法与验证[J]. 农业工程学报, 2015(23):173-178.
|
[54] |
王宇, 陈海涛, 李煜 , 等. 基于Grid-GSA算法的植保无人机路径规划方法[J]. 农业机械学报, 2017,48(7):29-37.
|
[55] |
徐博 . 植保无人机航线规划方法研究[D]. 北京: 中国农业大学, 2017.
|
[56] |
|
[57] |
|
[58] |
张瑞瑞, 文瑶, 伊铜川 , 等. 航空施药雾滴沉积特性光谱分析检测系统研发与应用[J]. 农业工程学报, 2017,33(24):80-87.
|
[59] |
张东彦, 兰玉彬, 王秀 , 等. 基于中分辨卫星影像的农用航空喷药效果评估[J]. 光谱学与光谱分析, 2016,36(6):1971-1977.
|
[60] |
张瑞瑞, 陈立平, 兰玉彬 , 等. 航空施药中雾滴沉积传感器系统设计与实验[J]. 农业机械学报, 2014,45(8):123-127.
|
[61] |
吴超琼, 赵利, 梁钢 , 等. 基于北斗导航系统的无人机飞行监管系统设计[J]. 测控技术, 2017,36(8):66-69.
|
[62] |
|
/
〈 |
|
〉 |