1 引言
2 测试图像及算法运行环境说明
表 1 测试图像分类Table 1 Classification of test images |
影响因素 | 数量/(幅) | |
---|---|---|
光照 | 含高亮与阴影 | 69 |
无高亮与阴影 | 88 | |
颜色 | 深红色 | 29 |
红色 | 81 | |
着色不完全 | 47 | |
枝叶遮挡程度 | 未遮挡 | 36 |
部分遮挡 | 64 | |
大面积遮挡 | 57 | |
背景 | 枝叶 | 48 |
枝叶与天空 | 93 | |
枝叶与土地 | 16 |
智慧农业 >
2019 , Vol. 1 >Issue 2: 45 - 54
DOI: https://doi.org/10.12133/j.smartag.2019.1.2.201903-SA003
融合K-means聚类分割算法与凸壳原理的遮挡苹果目标识别与定位方法
江 梅(1996-),女,在读研究生,研究方向:数字图像处理,Email:meijiang@nwafu.edu.cn。 |
收稿日期: 2019-03-10
要求修回日期: 2019-04-15
网络出版日期: 2019-04-30
基金资助
国家高技术研究发展计划(863计划)项目(2013AA10230402)
陕西省农业科技创新与攻关项目(2016NY-157)
中央高校基本科研业务费项目(2452016077)
版权
Recognition and localization method of occluded apples based on K-means clustering segmentation algorithm and convex hull theory
Received date: 2019-03-10
Request revised date: 2019-04-15
Online published: 2019-04-30
Copyright
自然场景下苹果目标的精确识别与定位是智慧农业信息感知与获取领域的重要内容。为了解决自然场景下苹果目标识别与定位易受枝叶遮挡的问题,在K-means聚类分割算法的基础上,提出了基于凸壳原理的目标识别算法,并与基于去伪轮廓的目标识别算法和全轮廓拟合目标识别算法作了对比。基于凸壳原理的目标识别算法利用了苹果近似圆形的形状特性,结合K-means算法与最大类间方差算法将果实与背景分离,由凸壳原理得到果实目标的凸壳多边形,对凸壳多边形进行圆拟合,标定出果实位置。为验证算法有效性,对自然场景下的157幅苹果图像进行了测试,基于凸壳原理的目标识别算法、基于去伪轮廓的目标识别方法和全轮廓拟合目标识别方法的重叠率均值分别为83.7%、79.5%和70.3%,假阳性率均值分别为2.9%、1.7%和1.2%,假阴性率均值分别为16.3%、20.5%和29.7%。结果表明,与上面两种对比算法相比较,基于凸壳原理的目标识别算法识别效果更好且无识别错误的情况,该算法可为自然环境下的果实识别与分割问题提供借鉴与参考。
关键词: 苹果识别; 遮挡目标; 凸壳原理; 伪轮廓; K-means聚类算法
江梅 , 孙飒爽 , 何东健 , 宋怀波 . 融合K-means聚类分割算法与凸壳原理的遮挡苹果目标识别与定位方法[J]. 智慧农业, 2019 , 1(2) : 45 -54 . DOI: 10.12133/j.smartag.2019.1.2.201903-SA003
Accurate segmentation and localization of apple objects in natural scenes is an important part of wisdom agriculture research for information perception and acquisition. In order to solve the problem that apples recognition and positioning are susceptible to occlusion of leaves in natural scenes, based on the K-means clustering segmentation algorithm, the object recognition algorithm based on convex hull theory was proposed. And the algorithm was compared with the object recognition algorithm based on removing false contours and the full-contour points fitting object recognition algorithm. The object recognition algorithm based on convex hull theory utilized that apples were like circle, combining K-means algorithm with Otsu algorithm to separate fruit from background. The convex polygon was obtained by convex hull theory and fit it circle to determine the position of the fruit. To verify the effectiveness of the algorithm, 157 apple images in natural scenes were tested. The average overlap rates of the object recognition algorithm based on convex hull theory, the object recognition algorithm based on removing false contour points and the full-contour points fitting object recognition algorithm were 83.7%, 79.5% and 70.3% respectively, the average false positive rates were 2.9%, 1.7% and 1.2% respectively, and the average false negative rates were 16.3%, 20.5% and 29.7% respectively. The experimental results showed that the object recognition algorithm based on convex hull theory had better localization performance and environmental adaptability compared to the other two algorithms and had no recognition error, which can provide reference for occluded fruits segmentation and localization in the natural scenes.
表 1 测试图像分类Table 1 Classification of test images |
影响因素 | 数量/(幅) | |
---|---|---|
光照 | 含高亮与阴影 | 69 |
无高亮与阴影 | 88 | |
颜色 | 深红色 | 29 |
红色 | 81 | |
着色不完全 | 47 | |
枝叶遮挡程度 | 未遮挡 | 36 |
部分遮挡 | 64 | |
大面积遮挡 | 57 | |
背景 | 枝叶 | 48 |
枝叶与天空 | 93 | |
枝叶与土地 | 16 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
黄小玉, 李光林, 马驰 , 等. 基于改进判别区域特征融合算法的近色背景绿色桃子识别[J]. 农业工程学报, 2018,34(23):142-148.
|
[7] |
钱建平, 杨信廷, 吴晓明 , 等. 自然场景下基于混合颜色空间的成熟期苹果识别方法[J]. 农业工程学报, 2012,28(17):137-142.
|
[8] |
|
[9] |
司永胜, 刘刚, 高瑞 , 等. 苹果采摘机器人果实识别与定位方法[J]. 农业机械学报, 2010,41(9):148-153.
|
[10] |
熊俊涛, 邹湘军, 王红军 , 等. 基于Retinex 图像增强的不同光照条件下的成熟荔枝识别[J]. 农业工程学报, 2013,29(12):170-178.
|
[11] |
李寒, 张漫, 高宇 , 等. 温室绿熟番茄机器视觉检测方法[J]. 农业工程学报, 2017,33(增刊1):328-334.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
宋怀波, 何东健, 潘景朋 . 基于凸壳理论的遮挡苹果目标识别与定位方法[J]. 农业工程学报, 2012,28(22):174-180.
|
[16] |
杨庆华, 刘灿, 荀一 , 等. 葡萄套袋机器人目标识别方法[J]. 农业机械学报, 2013,44(8):234-239.
|
[17] |
|
[18] |
赵军, 曲仕茹 . 平面点集凸壳的快速算法[J]. 计算机工程与应用, 2009,45(1):56-58.
|
[19] |
周启海 . 论二维点集或线段集凸壳生成算法改进与优化的同构化方向[J]. 计算机科学, 2007,34(7):216-218, 247.
|
[20] |
宋怀波, 张传栋, 潘景朋 , 等. 基于凸壳的重叠苹果目标分割与重建算法[J]. 农业工程学报, 2013,29(3):163-168.
|
/
〈 | 〉 |