为快速准确计数大豆籽粒,提高大豆考种速度和育种水平,本研究提出了一种基于密度估计和VGG-Two(VGG-T)的大豆籽粒计数方法。首先针对大豆籽粒计数领域可用图像数据集缺乏的问题,提出了基于数字图像处理技术的预标注和人工修正标注相结合的快速目标点标注方法,加快建立带标注的公开可用大豆籽粒图像数据集。其次构建了适用于籽粒图像数据集的VGG-T网络计数模型,该模型基于VGG16,结合密度估计方法,实现从单一视角大豆籽粒图像中准确计数籽粒。最后采用自制的大豆籽粒数据集对VGG-T模型进行测试,分别对有无数据增强的计数准确性、不同网络的计数性能以及不同测试集的计数准确性进行了对比试验。试验结果表明,快速目标点标注方法标注37,563个大豆籽粒只需花费197 min,比普通人工标注节约了1592 min,减少约的人工工作量,大幅降低时间成本和人工成本;采用VGG-T模型计数,其评估指标在原图和补丁(patch)情况下的平均绝对误差分别为和,均方误差为0.6和0.3,准确性高于传统图像形态学操作以及ResNet18、ResNet18-T和VGG16网络。在包含不同密度大豆籽粒的测试集中,误差波动较小,仍具有优良的计数性能,同时与人工计数和数粒仪相比,计数11,350个大豆籽粒分别节省大约和,实现大豆籽粒的快速计数任务。