2019 , Vol. 1 >Issue 1: 8 - 19
DOI: https://doi.org/10.12133/j.smartag.2019.1.1.201812-SA015
Original innovation of key technologies leading healthy development of smart agricultural
Received date: 2018-11-24
Request revised date: 2018-12-29
Online published: 2019-02-22
Copyright
Smart agricultural is a new form of agriculture that makes full use of human wisdom to develop agriculture. It is a new stage, new model and new pattern of agricultural development. The development of agricultural information technology is an inevitable requirement for smart agricultural. The new generation of core information technology, such as agricultural big data, cloud computing, Internet of things, artificial intelligence, can enable the innovative development of smart agricultural. It can provide new technologies, new methods and new solutions for the healthy development of smart agricultural. Agricultural informationization standardization is the premise to guide the progress and innovation of agricultural science and technology. It can lead the progress of agricultural science and technology and standardize the process of agricultural production. It is an urgent need for the development of smart agricultural. Agricultural Internet of things and agricultural application-specific chip are the core technologies and equipment for the development of smart agricultural. The application demand of agricultural Internet of things can promote the development of agricultural application-specific chip technology. The technological innovation of agricultural application-specific chip will promote the technological upgrading of agricultural Internet of things. Agricultural big data and cloud computing are powerful technical support for massive and complex agricultural information processing. The computing requirements of big data algorithms can promote the innovation and development of cloud computing technology. The improvement of cloud computing capability is more convenient for the application of big data algorithms and applications. Agricultural information security and blockchain are the key to guarantee the security of agricultural information, agricultural product quality certification system and agricultural. Agricultural artificial intelligence is the inevitable choice to improve agricultural labor productivity, reduce resource consumption, and efficient production. The innovation and application of artificial intelligence algorithm is an effective measure to realize smart agricultural. Agricultural plasma technology provides a new technological means for smart agricultural to produce more safer and more reassuring green organic agricultural products. It can be used in different stages of agricultural production, includes before, during and after production, to protect the healthy development of the whole agricultural production chain. The original innovation and autonomous control of the key technologies of smart agricultural will surely lead the healthy development of smart agricultural.
GAO Wanlin , ZHANG Ganghong , ZHANG Guofeng , HUANG Feng , WU Dehua , TAO Sha , WANG Minjuan . Original innovation of key technologies leading healthy development of smart agricultural[J]. Smart Agriculture, 2019 , 1(1) : 8 -19 . DOI: 10.12133/j.smartag.2019.1.1.201812-SA015
[1] |
周国民 . 浅议智慧农业[J]. 农业网络信息, 2009, (10):5-7.
|
[2] |
孙忠富, 杜克明, 郑飞翔 , 等. 大数据在智慧农业中研究与应用展望[J]. 中国农业科技导报, 2013,15(6):63-71.
|
[3] |
杨大蓉 . 中国智慧农业产业发展策略[J]. 江苏农业科学, 2014,42(4):1-2.
|
[4] |
顿文涛, 赵玉成, 袁帅 , 等. 基于物联网的智慧农业发展与应用[J]. 农业网络信息, 2014(12):9-12.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
田世宏 . 实施标准化战略践行新发展理念[J]. 中国标准化, 2016(11):72-73.
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
杨瑛, 崔运鹏 . 我国智慧农业关键技术与未来发展[J]. 信息技术与标准化, 2015(6):34-37.
|
[16] |
王莹, 叶雷 . 2015: 物联网引领芯片厂商创新[J]. 电子产品世界, 2015(1):11-19.
|
[17] |
“十三五”农业科技发展规划[EB/OL]. ( 2017- 01- 25)[2018-12-30]. http://jiuban.moa.gov.cn/zwllm/ghjh/201702/t20170207_5469863.htm.
|
[18] |
农机装备发展行动方案(2016-2025)[EB/OL]. ( 2016- 12- 22)[2018-08-28]. http://www.miit.gov.cn/newweb/n1146295/n1146592/n3917132/n4061919/c5433654/content.html.
|
[19] |
国家集成电路产业发展推进纲要[EB/OL]. ( 2014- 06- 24)[2018-12-30]. http://www.miit.gov.cn/n1146290/n1146397/c4218836/content.html.
|
[20] |
|
[21] |
李圣, 黄永忠, 陈海勇 . 大数据流式计算系统研究综述[J]. 信息工程大学学报, 2016,17(1):88-92.
|
[22] |
孙大为 . 大数据流式计算:应用特征和技术挑战[J]. 大数据, 2015,1(3):99-105.
|
[23] |
周志阳, 陈飞 . 大数据实时计算平台技术综述[J]. 中国新通信, 2017,19(4):47-47.
|
[24] |
刘华, 贾继增 . 指纹图谱在作物品种鉴定中的应用[J]. 中国种业, 1997(2):45-48.
|
[25] |
|
[26] |
钱卫宁, 邵奇峰, 朱燕超 , 等. 区块链与可信数据管理:问题与方法[J]. 软件学报, 2018(1):150-159.
|
[27] |
廉师友 . 人工智能技术导论[M]. 西安: 西安电子科技大学出版社, 2007.
|
[28] |
杨兴, 朱大奇, 桑庆兵 . 专家系统研究现状与展望[J]. 计算机应用研究, 2007,24(5):4-9.
|
[29] |
国务院. 中国制造2025[EB/OL]. ( 2015- 05- 08) [2018-08-28]. http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm.
|
[30] |
国务院. 新一代人工智能发展规划[EB/OL]. ( 2017- 07- 08) [2018-08-28]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
王永维, 曹林, 王俊 , 等. 冷等离子体处理对水稻种子萌发的影响[J]. 农业机械学报, 2013,44(6):206-209.
|
[46] |
李玲, 申民翀, 李建刚 , 等. 冷等离子体种子处理对油料作物种子萌发及幼苗生长的影响[J]. 江西农业学报, 2015,27(8):1-5.
|
[47] |
王陶, 李文, 陈宏伟 , 等. 低能离子束生物工程及其应用研究进展[J]. 徐州工程学院学报(自然科学版), 2009,24(1):6-10.
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
/
〈 |
|
〉 |