2019 , Vol. 1 >Issue 2: 85 - 93
DOI: https://doi.org/10.12133/j.smartag.2019.1.2.201903-SA002
Development of an automatic steering test bench for tractors
Received date: 2019-03-13
Request revised date: 2019-04-18
Online published: 2019-04-30
Copyright
In recent years, the technology of automatic tractor navigation based on satellite positioning has greatly improved the efficiency and accuracy of tractor field work. Automatic steering contributes is one of the key technologies to realize the automation and intelligentization of agricultural mechanization. It costs much time to install and test automatic steering systems for tractors in the field due to complicated conditions. An automatic steering test bench was developed to reduce time consumed in the field by conducting simulation tests on accuracy and reliability. The developed automatic steering system can be applied to the tractor after obtaining satisfactory results on the test bench, which will greatly shorten the development cycle and improve the precision of the system. In this study, a 120-horsepower tractor front axle was selected. Through the design and calculation of mechanical structure, hydraulic system and electrical control system, the tractor automatic steering test bench was built. The mechanical body consist of a tractor front axle assembly, a loading device and a mechanical frame. The hydraulic interface was reserved for post-installation of automatic steering devices. Two inertial measurement units were used to test the steering system performance by recording the rotation angle of front wheels and the steering wheel. The steering wheel had a steering clearance of 16.48° and an average wheel delay time of 0.14s. In the general range and small angle range, there is a small deviation between the actual corner and the theoretical corner. Responsibility and stability met requirements for agricultural machinery steering. Experimental results show that the test bench has stable performance in terms of status detection, steering control and measurement analysis, which could meet requirements for verifying working parameters of automatic steering devices. The research provides an efficient and reliable test bench for commissioning and performance testing of agricultural machinery automatic steering.
Key words: tractor; automatic steering; test bench; automatic control
DU Juan , LI Min , JIN Chengqian , YIN Xiang . Development of an automatic steering test bench for tractors[J]. Smart Agriculture, 2019 , 1(2) : 85 -93 . DOI: 10.12133/j.smartag.2019.1.2.201903-SA002
[1] |
刘进一 . 基于速度自适应的拖拉机自动导航控制系统研究[D]. 北京: 中国农业大学, 2017.
|
[2] |
胡静涛, 高雷, 白晓平 , 等. 农业机械自动导航技术研究进展[J]. 农业工程学报, 2015,31(10):1-10.
|
[3] |
魏爽, 李世超, 张漫 , 等. 基于GNSS的农机自动导航路径搜索及转向控制[J]. 农业工程学报, 2017,33(S1):70-77.
|
[4] |
周建军, 张漫, 汪懋华 , 等. 基于模糊控制的农用车辆路线跟踪[J]. 农业机械学报, 2009,40(04):151-156.
|
[5] |
刘金波, 迟德霞, 金宏亮 . 国内的农用车辆自动转向系统研究进展[J]. 农业科技与装备, 2011(04):67-68, 72.
|
[6] |
马建斌 . 拖拉机自动转向控制系统设计[J]. 科协论坛(下半月), 2013(10):121-122.
|
[7] |
|
[8] |
|
[9] |
张琳洁, 张文爱, 韩应征 , 等. 农业机械导航关键技术发展分析[J]. 农机化研究, 2016,38(06):10-15, 25.
|
[10] |
罗锡文, 张智刚, 赵祚喜 , 等. 东方红X-804拖拉机的DGPS自动导航控制系统[J]. 农业工程学报, 2009,25(11):139-145.
|
[11] |
吴晓鹏, 赵祚喜, 张智刚 , 等. 东方红拖拉机自动转向控制系统设计[J]. 农业机械学报, 2009,40(S1):1-5.
|
[12] |
陈文良, 宋正河, 毛恩荣 . 拖拉机自动驾驶转向控制系统的设计[J]. 华中农业大学学报, 2005, (S1):57-62.
|
[13] |
|
[14] |
胡炼, 罗锡文, 赵作喜 , 等. 插秧机电控操作机构和控制算法设计[J]. 农业工程学报, 2009,25(4):118-122.
|
[15] |
张智刚, 罗锡文, 李俊岭 . 轮式农业机械自动转向控制系统研究[J]. 农业工程学报, 2005(11):77-80.
|
[16] |
胡炼, 罗锡文, 张智刚 , 等. 基于CAN总线的分布式插秧机导航控制系统设计[J]. 农业工程学报, 2009,25(12):88-92.
|
[17] |
|
[18] |
朱思洪, 朱永刚, 朱星星 , 等. 大型拖拉机动力换挡变速箱试验台[J]. 农业机械学报, 2011,42(4):13-16.
|
[19] |
李志臣, 时苏战, 凌秀军 , 等. 拖拉机主动转向试验台设计[J]. 中国农机化学报, 2016,37(11):127-130.
|
[20] |
东方红LX1204拖拉机[J]. 现代农机, 2016(06):40.
|
[21] |
王庆 . 拖拉机电控液压动力转向系统的转向机构及液压系统设计[D]. 南京: 南京农业大学, 2010.
|
[22] |
廖抒华, 王金波, 张宝霞 , 等. 转向系统试验台转向阻力模拟研究现状及发展[J]. 上海汽车, 2009, (10):33-35.
|
[23] |
高连兴, 吴明 . 拖拉机汽车学[M]. 北京: 中国农业出版社, 2009.
|
[24] |
吕栗樵, 石全社, 都丽萍 , 等. 轮式拖拉机原地转向阻力矩的分析与实验[J]. 农业机械学报, 1990, (3):1-9.
|
[25] |
赵建东 . 基于东方红SG-250拖拉机电控液压转向系统研究[D]. 南京: 南京农业大学, 2012.
|
[26] |
刘军营 . 液压与气压传动(第2版) [M]. 西安: 西安电子科技大学出版社, 2014,8.
|
[27] |
张利平 . 液压传动系统设计与使用[M]. 北京: 化学工业出版社, 2010.
|
[28] |
吴朋涛 . 履带拖拉机液压驱动系统的设计[D]. 杨凌: 西北农林科技大学, 2013.
|
[29] |
黄悦峰, 王榜, 张启鹏 , 等. 九轴无线姿态传感器(LPMS-B)检测分析及应用[J]. 装备制造技术, 2018(01):89-93.
|
[30] |
李标 . 基于LPMS-B的机器人末端姿态检测试验研究[D]. 南宁: 广西大学, 2015.
|
/
〈 |
|
〉 |