2019 , Vol. 1 >Issue 4: 83 - 90
DOI: https://doi.org/10.12133/j.smartag.2019.1.4.201911-SA001
Development of precision service system for intelligent agriculture field crop production based on BeiDou system
Received date: 2019-11-13
Revised date: 2019-12-03
Online published: 2019-12-24
Precision navigation technology of agricultural machinery is being applied on a large scale for field crop production in China. The technology can reduce labor cost, improve working quality, and extend working time. However, the precision application technology of agricultural machinery and precision management technology of agricultural production are still slow in development. The technology, equipment, and service system of precision agriculture have not been completely developed yet in China. There is still a lack of scientific and technical means to achieve the main objectives of cost saving, efficiency improvement, energy saving, and environmental protection in crop production. With the integration of material, energy, and information, intelligent agricultural machinery system is being developed to provide a safer, more efficient, and more scientific solution for agricultural production. In view of the characteristics of intelligent agricultural machinery system, the characteristics of socialized service of agricultural machinery in China, and the status quo of agricultural financial subsidies, this paper puts forward an idea that to develop a socialized precision service system of agricultural machinery, in order to achieve cost saving, efficiency improvement, energy saving, and environmental protection for crop production. The system includes the core participants in agricultural machinery production operations, such as agricultural production organizations, agricultural machinery service organizations, related agriculture management authorities, and the third-party data management service organization. The key technologies for the system include the intelligent gateway technology of agricultural machinery, the variable controlling and measurement technology of fertilizer and chemical, the big data management service technology, and the technology of professional application service platform. During the field operation, the agricultural machinery can control the application of fertilizer or chemical according the prescription map and send the data of position and flow to the database belongs to the third-party organization designated by the government. Therefore, the construction of this system can be used as a basis for the social services and the granting of subsidies. The government can set related standards of application of fertilizer or chemical, and pay the subsidies for the machinery operation according to the operating area when the farmers achieve the standards, which may encourage the farmers to adopt the advanced technology to save fertilizer and chemical. The study provides solutions and technical means to achieve the goal of reducing both fertilizer and chemicals, to adjust of the state’s relevant agricultural subsidy policies, and to promote the comprehensive application of China’s precision agricultural technology.
Wu Caicong , Fang Xiangming . Development of precision service system for intelligent agriculture field crop production based on BeiDou system[J]. Smart Agriculture, 2019 , 1(4) : 83 -90 . DOI: 10.12133/j.smartag.2019.1.4.201911-SA001
1 |
李安宁, 郭京华, 刘小伟, 等 . 赴美国精准农业考察情况报告——中美科技合作交流计划精准农业考察团[J]. 农业工程技术, 2018, 38(9): 112-117.
|
2 |
|
3 |
吴才聪 . 美国精准农业技术应用概况及北斗农业应 用思考[J]. 卫星应用( 6:16-20.
|
4 |
刘小伟, 吴才聪 . 基于北斗系统发展我国精准农业技术装备[J]. 农业工程技术, 2018, 38(18): 14-19.
|
5 |
余有成 . 智能奥秘探寻记[M]. 香港: 香港文汇出版社, 2012.
|
6 |
韩树丰, 何勇, 方慧 . 农机自动导航及无人驾驶车辆的发展综述[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 381-391.
|
7 |
赵春江 . 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
|
8 |
罗锡文, 廖娟, 邹湘军, 等 . 信息技术提升农业机械化水平[J]. 农业工程学报, 2016, (20): 1-14.
|
9 |
罗锡文, 廖娟, 胡炼, 等 . 提高农业机械化水平促进农业可持续发展[J]. 农业工程学报, 2016, 32(1): 1-11.
|
10 |
吴才聪, 苑严伟, 韩云霞 . 北斗在农业生产过程中的应用[M]. 北京: 电子工业出版社, 2016.
|
11 |
李金良, 倪国庆, 朱金光, 等 . 我国农业装备产业技术发展方向及路径[J]. 农业机械, 2019, (8): 81-85.
|
12 |
北斗卫星导航系统 . 北斗卫星导航系统介绍[EB/OL]. [2019-11-10].
China Satellite Navigation System Management Office . Introduction to BeiDou Navigation Satellite System[EB/OL]. [2019-11-10].
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
汪懋华 . 助力乡村振兴 推进“智慧农业”创新发展[J]. 智慧农业, 2019, 1(1).
|
20 |
|
21 |
|
22 |
杨丽, 颜丙新, 张东兴, 等 . 玉米精密播种技术研究进展[J]. 农业机械学报, 2016, 47(11): 38-48.
|
23 |
韩英, 贾如, 唐汉 . 精准变量施肥机械研究现状与发展建议[J]. 农业工程, 2019, 9(5):1-6.
|
24 |
|
25 |
|
26 |
|
27 |
中国商业数据网 . 2019-2024年中国无人机市场前景及投资机会研究报[R]. 2019.
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
杨杰 . 上海启动农机购置补贴“三合一”试点[J]. 中国农机监理, 2019, (6): 26.
|
37 |
|
38 |
李先德, 宗义湘 . 农业补贴政策的国际比较[M]. 北京: 中国农业科学技术出版社, 2012.
|
/
〈 |
|
〉 |