Research Progress and Outlook of Livestock Feeding Robot
Received date: 2022-03-01
Online published: 2022-06-17
The production mode of livestock breeding has changed from extensive to intensive, and the production level is improved. However, low labor productivity and labor shortage have seriously restricted the rapid development of China's livestock breeding industry. As a new intelligent agricultural machinery equipment, agricultural robot integrates advanced technologies, such as intelligent monitoring, automatic control, image recognition technology, environmental modeling algorithm, sensors, flexible execution, etc. Using modern information and artificial intelligence technology, developing livestock feeding and pushing robots, realizing digital and intelligent livestock breeding, improving livestock breeding productivity are the main ways to solve the above contradiction. In order to deeply analyze the research status of robot technology in livestock breeding, products and literature were collected worldwide. This paper mainly introduced the research progress of livestock feeding robot from three aspects: Rail feeding robot, self-propelled feeding robot and pushing robot, and analyzed the technical characteristics and practical application of feeding robot.The rail feeding robot runs automatically along the fixed track, identifies the target animal, positions itself, and accurately completes feed delivery through preset programs to achieve accurate feeding of livestock. The self-propelled feeding robot can walk freely in the farm and has automatic navigation and positioning functions. The system takes single chip microcomputer as the control core and realizes automatic walking by sensor and communication module. Compared with the rail feeding robot, the feeding process is more flexible, convenient and technical, which is more conducive to the promotion and application of livestock farms. The pushing robot will automatically push the feed to the feeding area, promote the increase of feed intake of livestock, and effectively reduce the labor demand of the farm. By comparing the feeding robots of developed countries and China from two aspects of technology and application, it is found that China has achieved some innovation in technology, while developted countries do better in product application. The development of livestock robot was prospected. In terms of strategic planning, it is necessary to keep up with the international situation and the trend of technological development, and formulate the agricultural robot development strategic planning in line with China's national conditions. In terms of the development of core technologies, more attention should be paid to the integration of information perception, intelligent sensors and deep learning algorithms to realize human-computer interaction. In terms of future development trends, it is urgent to strengthen innovation, improve the friendliness and intelligence of the robot, and improve the learning ability of the robot. To sum up, intelligent livestock feeding and pushing machine operation has become a cutting-edge technology in the field of intelligent agriculture, which will surely lead to a new round of agricultural production technology reform, promote the transformation and upgrading of China's livestock industry. .
YANG Liang , XIONG Benhai , WANG Hui , CHEN Ruipeng , ZHAO Yiguang . Research Progress and Outlook of Livestock Feeding Robot[J]. Smart Agriculture, 2022 , 4(2) : 86 -98 . DOI: 10.12133/j.smartag.SA202204001
1 |
赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
|
2 |
罗锡文, 区颖刚, 赵祚喜, 等. 农用智能移动作业平台模型的研制[J]. 农业工程学报, 2005, 21(2): 83-85.
|
3 |
农业农村部畜牧兽医局, 中国奶业协会. 2021中国奶业统计摘要[M]. 北京: 中国奶业协会, 2021: 26.
|
4 |
Trioliet. Triomatic HP suspended feeding robot [EB/OL]. [2022-3-10].
|
5 |
Trioliet. Triomatic WP wheel-driven feeding robot[EB/OL]. [2022-3-10].
|
6 |
Rovibec. ROVER FEEDING ROBOT [EB/OL]. [2022-3-10].
|
7 |
AgriEXPO. ROV[EB/OL]. [2022-3-10].
|
8 |
AgriEXPO. DEC SR[EB/OL]. [2022-3-10].
|
9 |
AgriEXPO. DEC HDR[EB/OL]. [2022-3-10].
|
10 |
AgriEXPO. ARAMIS II[EB/OL]. [2022-3-10].
|
11 |
AgriEXPO. ATHOS[EB/OL]. [2022-3-10].
|
12 |
方建军. 饲喂机器人的研究与开发[J]. 农机化研究, 2005(1): 158-160.
|
13 |
杨存志, 李源源, 杨旭, 等. FR-200型奶牛智能化精确饲喂机器人的研制[J]. 农机化研究, 2014, 36(2): 120-122, 126.
|
14 |
倪志江, 高振江, 蒙贺伟, 等. 智能化个体奶牛精确饲喂机设计与实验[J]. 农业机械学报, 2009, 40(12): 205-209.
|
15 |
张磊. 羊只饲喂机器人行驶系统及其导引控制系统设计[D]. 呼和浩特: 内蒙古农业大学, 2018.
|
16 |
京鹏畜牧. 机器人智能饲喂[EB/OL]. [2022-3-10].
|
17 |
采编部, 王旭.智慧化养殖管理 打造山黑猪高效养殖模式——吉林精气神有机农业股份有限公司典型案例介绍[J]. 中国畜牧业, 2021(2): 16-17.
|
18 |
"猪脸识别"[J]. 农家之友, 2019(7): 34.
|
19 |
Lely. Lely vector [EB/OL]. [2022-3-10].
|
20 |
AgriEXPO. ARANOM[EB/OL]. [2022-3-10].
|
21 |
弗戈工业传媒. 贝加莱: 智慧谷仓[EB/OL]. [2022-3-10].
|
22 |
AgriEXPO. FARO[EB/OL]. [2022-3-10].
|
23 |
DeLaval. DeLaval calf feeder CF1000S wins 2017 Dairy Herd Management Innovation Award[EB/OL]. [2022-3-10].
|
24 |
马为红, 薛向龙, 李奇峰, 等. 智能养殖机器人技术与应用进展[J]. 中国农业信息, 2021, 33(3): 24-34.
|
25 |
|
26 |
张帆, 李海军, 雷禾雨, 等. 羊只饲喂机器人行走控制系统的设计[J]. 农业装备技术, 2020, 46(1): 35-39.
|
27 |
孙芊芊, 李海军, 宣传忠, 等. 基于羊只应激反应的智能饲喂机器人功能与造型研究[J]. 内蒙古农业大学学报, 2019, 40(5): 60-64.
|
28 |
王浩鹏. 羊只饲喂机器人螺旋输送轴结构优化[D]. 呼和浩特: 内蒙古农业大学, 2020.
|
29 |
吕占民, 金红伟, 王明磊. 奶牛规模养殖机械化先进适用装备概述(一)[J]. 中国奶牛, 2021(10): 39-43.
LYU Z,
|
30 |
吕占民, 金红伟. 奶牛规模养殖机械化先进适用装备概述(二)[J]. 中国奶牛, 2021(11): 44-48.
LYU Z,
|
31 |
吕占民, 金红伟. 奶牛规模养殖机械化先进适用装备概述(三)[J]. 中国奶牛, 2021(12): 44-47.
LYU Z,
|
32 |
AgriEXPO. PRO-FEED 2020[EB/OL]. [2022-3-10].
|
33 |
Rovibec. Ranger feed pusher[EB/OL]. [2022-3-10].
|
34 |
AgriEXPO. Stallboy feed[EB/OL]. [2022-3-10].
|
35 |
Lely. Lely juno[EB/OL]. [2022-3-10].
|
36 |
AgriEXPO. Faro[EB/OL]. [2022-3-10].
|
37 |
AgriEXPO. Cow-boy[EB/OL]. [2022-3-10].
|
38 |
沈治. 自适应PID控制的自动推料机器人的设计[J]. 机械设计与制造, 2020(10): 261-264, 269.
|
39 |
焦盼德, 贺成柱, 杨军平. 奶牛智能推料机器人的研制[J]. 中国农机化学报, 2018, 39(1): 74-77.
|
40 |
谢艳, 张子龙, 龚荣虎, 等. 基于TRIZ理论的奶牛饲喂机器人创新设计[J]. 机械设计与研究, 2021, 37(5): 31-34, 52.
|
41 |
董创. 牧场智能推料机器人关键技术研究与样机研发[D]. 天津: 天津农学院, 2021.
|
42 |
王述彦, 师宇, 冯忠绪.基于模糊 PID 控制器的控制方法研究[J]. 机械科学与技术, 2011(1): 166-172.
|
43 |
龚兰芳, 许伦辉. 四旋翼机器人运动控制与自适应 PID 控制算法设计[J]. 机械设计与制造, 2018(12): 64-67.
|
44 |
董理, 杨东, 鹿建森. 工业机器人轨迹规划方法综述[J/OL]. 控制工程: 1-12[2022-05-11]. DOI:10.14107/j.cnki.kzgc.20210654 .
|
45 |
|
/
〈 | 〉 |