Welcome to Smart Agriculture 中文
Overview Article

Agricultural Knowledge Intelligent Service Technology: A Review

  • ZHAO Chunjiang
Expand
  • 1.National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
    2.Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    3.Key Laboratory of Agri-Informatics, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
    4.Key Laboratory of Digital Rural Technology, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
ZHAO Chunjiang, E-mail:zhaocj@nercita.org.cn

Received date: 2023-06-02

  Online published: 2023-07-05

Supported by

Technological Innovation 2030 "New Generation Artificial Intelligence" Major Project (2021ZD0113604); Ministry of Finance and Ministry of Agriculture and Rural Affairs: National Modern Agricultural Industry Technology System (CARS-23-D07)

Abstract

Significance Agricultural environment is dynamic and variable, with numerous factors affecting the growth of animals and plants and complex interactions. There are numerous factors that affect the growth of all kinds of animals and plants. There is a close but complex correlation between these factors such as air temperature, air humidity, illumination, soil temperature, soil humidity, diseases, pests, weeds and etc. Thus, farmers need agricultural knowledge to solve production problems. With the rapid development of internet technology, a vast amount of agricultural information and knowledge is available on the internet. However, due to the lack of effective organization, the utilization rate of these agricultural information knowledge is relatively low.How to analyze and generate production knowledge or decision cases from scattered and disordered information is a big challenge all over the world. Agricultural knowledge intelligent service technology is a good way to resolve the agricultural data problems such as low rank, low correlation, and poor interpretability of reasoning. It is also the key technology to improving the comprehensive prediction and decision-making analysis capabilities of the entire agricultural production process. It can eliminate the information barriers between agricultural knowledge, farmers, and consumers, and is more conducive to improve the production and quality of agricultural products, provide effective information services. Progress The definition, scope, and technical application of agricultural knowledge intelligence services are introduced in this paper. The demand for agricultural knowledge services are analyzed combining with artificial intelligence technology. Agricultural knowledge intelligent service technologies such as perceptual recognition, knowledge coupling, and inference decision-making are conducted. The characteristics of agricultural knowledge services are analyzed and summarized from multiple perspectives such as industrial demand, industrial upgrading, and technological development. The development history of agricultural knowledge services is introduced. Current problems and future trends are also discussed in the agricultural knowledge services field. Key issues in agricultural knowledge intelligence services such as animal and plant state recognition in complex and uncertain environments, multimodal data association knowledge extraction, and collaborative reasoning in multiple agricultural application scenarios have been discussed. Combining practical experience and theoretical research, a set of intelligent agricultural situation analysis service framework that covers the entire life cycle of agricultural animals and plants and combines knowledge cases is proposed. An agricultural situation perception framework has been built based on satellite air ground multi-channel perception platform and Internet real-time data. Multimodal knowledge coupling, multimodal knowledge graph construction and natural language processing technology have been used to converge and manage agricultural big data. Through knowledge reasoning decision-making, agricultural information mining and early warning have been carried out to provide users with multi-scenario agricultural knowledge services. Intelligent agricultural knowledge services have been designed such as multimodal fusion feature extraction, cross domain knowledge unified representation and graph construction, and complex and uncertain agricultural reasoning and decision-making. An agricultural knowledge intelligent service platform composed of cloud computing support environment, big data processing framework, knowledge organization management tools, and knowledge service application scenarios has been built. Rapid assembly and configuration management of agricultural knowledge services could be provide by the platform. The application threshold of artificial intelligence technology in agricultural knowledge services could be reduced. In this case, problems of agricultural users can be solved. A novel method for agricultural situation analysis and production decision-making is proposed. A full chain of intelligent knowledge application scenario is constructed. The scenarios include planning, management, harvest and operations during the agricultural before, during and after the whole process. Conclusions and Prospects The technology trend of agricultural knowledge intelligent service is summarized in five aspects. (1) Multi-scale sparse feature discovery and spatiotemporal situation recognition of agricultural conditions. The application effects of small sample migration discovery and target tracking in uncertain agricultural information acquisition and situation recognition are discussed. (2) The construction and self-evolution of agricultural cross media knowledge graph, which uses robust knowledge base and knowledge graph to analyze and gather high-level semantic information of cross media content. (3) In response to the difficulties in tracing the origin of complex agricultural conditions and the low accuracy of comprehensive prediction, multi granularity correlation and multi-mode collaborative inversion prediction of complex agricultural conditions is discussed. (4) The large language model (LLM) in the agricultural field based on generative artificial intelligence. ChatGPT and other LLMs can accurately mine agricultural data and automatically generate questions through large-scale computing power, solving the problems of user intention understanding and precise service under conditions of dispersed agricultural data, multi-source heterogeneity, high noise, low information density, and strong uncertainty. In addition, the agricultural LLM can also significantly improve the accuracy of intelligent algorithms such as identification, prediction and decision-making by combining strong algorithms with Big data and super computing power. These could bring important opportunities for large-scale intelligent agricultural production. (5) The construction of knowledge intelligence service platforms and new paradigm of knowledge service, integrating and innovating a self-evolving agricultural knowledge intelligence service cloud platform. Agricultural knowledge intelligent service technology will enhance the control ability of the whole agricultural production chain. It plays a technical support role in achieving the transformation of agricultural production from "observing the sky and working" to "knowing the sky and working". The intelligent agricultural application model of "knowledge empowerment" provides strong support for improving the quality and efficiency of the agricultural industry, as well as for the modernization transformation and upgrading.

Cite this article

ZHAO Chunjiang . Agricultural Knowledge Intelligent Service Technology: A Review[J]. Smart Agriculture, 2023 , 5(2) : 126 -148 . DOI: 10.12133/j.smartag.SA202306002

References

1 吕璐成, 韩涛. 人工智能赋能知识服务,开启智能数字农业未来——2020全国图书情报青年学术论坛会议综述[J]. 农业图书情报学报, 2021, 33(12): 83-88.
  LYU L C, HAN T. Artificial intelligence enables knowledge service and opens up the future of intelligent agriculture: Review of 2020 national library and information youth academic forum[J]. Journal of library and information science in agriculture, 2021, 33(12): 83-88.
2 傅隆生, 宋珍珍, ZHANG X, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120.
  FU L S, SONG Z Z, ZHANG X, et al. Applications and research progress of deep learning in agriculture[J]. Journal of China agricultural university, 2020, 25(2): 105-120.
3 曹书林, 史佳欣, 侯磊, 等. 知识库问答研究进展与展望[J]. 计算机学报, 2023, 46(3): 512-539.
  CAO S L, SHI J X, HOU L, et al. Question answering over knowledge base: An overview[J]. Chinese journal of computers, 2023, 46(3): 512-539.
4 岳学军, 蔡雨霖, 王林惠, 等. 农情信息智能感知及解析的研究进展[J]. 华南农业大学学报, 2020, 41(6): 14-28.
  YUE X J, CAI Y L, WANG L H, et al. Research progress of intelligent perception and analytics of agricultural information[J]. Journal of South China agricultural university, 2020, 41(6): 14-28.
5 李亚文, 刘爱军, 陈垚. 基于GLCM纹理特征提取的黄瓜叶部病害检测算法研究[J]. 湖北农业科学, 2022, 61(9): 141-145.
  LI Y W, LIU A J, CHEN Y. Research on cucumber leaf disease detection algorithm based on GLCM texture feature extraction[J]. Hubei agricultural sciences, 2022, 61(9): 141-145.
6 闫明壮, 王浩云, 吴媛媛, 等. 基于光谱与纹理特征融合的绿萝叶绿素含量检测[J]. 南京农业大学学报, 2021, 44(3): 568-575.
  YAN M Z, WANG H Y, WU Y Y, et al. Detection of chlorophyll content of Epipremnum aureum based on fusion of spectrum and texture features[J]. Journal of Nanjing agricultural university, 2021, 44(3): 568-575.
7 ELSTONE L, HOW KY, BRODIE S.et al. High speed crop and weed for precision weeding[J]. Sensors, 2020, 20(2): ID 455.
8 尹彦鑫, 孟志军, 赵春江, 等. 大田无人农场关键技术研究现状与展望[J]. 智慧农业(中英文), 2022, 4(4): 1-25.
  YIN Y X, MENG Z J, ZHAO C J, et al. State-of-the-art and prospect of research on key technical for unmanned farms of field corp[J]. Smart agriculture, 2022, 4(4): 1-25.
9 沈明霞, 丁奇安, 陈佳, 等. 信息感知技术在畜禽养殖中的研究进展[J]. 南京农业大学学报, 2022, 45(5): 1072-1085.
  SHEN M X, DING Q A, CHEN J, et al. A review of information perception technology in livestock breeding[J]. Journal of Nanjing agricultural university, 2022, 45(5): 1072-1085.
10 陈佳云, 徐向英, 章永龙, 等. 多模态知识图谱在农业中的研究进展[J]. 农业大数据学报, 2022, 4(3): 126-134.
  CHEN J Y, XU X Y, ZHANG Y L, et al. Research progress of multimodal knowledge graph in agriculture[J]. Journal of agricultural big data, 2022, 4(3): 126-134.
11 ZHOU J, LI J, WANG C, et al. Crop disease identification and interpretation method based on multimodal deep learning[J]. Computers and Electronics in Agriculture, 2021, 189(3): ID 106408.
12 赵鹏飞, 赵春江, 吴华瑞, 等. 基于BERT的多特征融合农业命名实体识别[J]. 农业工程学报, 2022, 38(3): 112-118.
  ZHAO P F, ZHAO C J, WU H R, et al. Recognition of the agricultural named entities with multi-feature fusion based on BERT[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(3): 112-118.
13 袁培森, 李润隆, 王翀, 等. 基于BERT的水稻表型知识图谱实体关系抽取研究[J]. 农业机械学报, 2021, 52(5): 151-158.
  YUAN P S, LI R L, WANG C, et al. Entity relationship extraction from rice phenotype knowledge graph based on BERT[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(5): 151-158.
14 WANG M, WANG H F, QI G L, et al. Richpedia: A large-scale, comprehensive multi-modal knowledge graph[J]. Big data research, 2020, 22: ID 100159.
15 张宇, 郭文忠, 林森, 等. 深度学习与知识推理相结合的研究综述[J]. 计算机工程与应用, 2022, 58(1): 56-69.
  ZHANG Y, GUO W Z, LIN S, et al. Review on combination of deep learning and knowledge reasoning[J]. Computer engineering and applications, 2022, 58(1): 56-69.
16 白皓然, 孙伟浩, 金宁, 等. 基于改进Bi-LSTM-CRF的农业问答系统研究[J]. 中国农机化学报, 2023, 44(2): 99-105.
  BAI H R, SUN W H, JIN N, et al. Research on agricultural question answering system based on improved Bi-LSTM-CRF[J]. Journal of Chinese agricultural mechanization, 2023, 44(2): 99-105.
17 FRIHA O, FERRAG M A, SHU L, et al. Internet of Things for the future of smart agriculture: A comprehensive survey of emerging technologies[J]. IEEE/CAA journal of automatica Sinica, 2021, 8(4): 718-752.
18 于合龙, 丁民权, 黄浦, 等. 基于ZigBee网络的人参生长监测及病害预警[J]. 吉林农业大学学报, 2017, 39(1): 120-126.
  YU H L, DING M Q, HUANG P, et al. Growth monitoring and disease early warning of ginseng based on ZigBee network[J]. Journal of Jilin agricultural university, 2017, 39(1): 120-126.
19 田有文, 吴伟, 卢时铅, 等. 深度学习在水果品质检测与分级分类中的应用[J]. 食品科学, 2021, 42(19): 260-270.
  TIAN Y W, WU W, LU S Q, et al. Application of deep learning in fruit quality detection and grading[J]. Food science, 2021, 42(19): 260-270.
20 ZHOU H Y, WANG X, AU W, et al. Intelligent robots for fruit harvesting: Recent developments and future challenges[J]. Precision agriculture, 2022, 23(5): 1856-1907.
21 LI G M, HUANG Y B, CHEN Z Q, et al. Practices and applications of convolutional neural network-based computer vision systems in animal farming: A review[J]. Sensors, 2021, 21(4): ID 1492.
22 CHOUHAN S S, SINGH U P, JAIN S. Applications of computer vision in plant pathology: A survey[J]. Archives of computational methods in engineering, 2020, 27(2): 611-632.
23 郝王丽, 尉培岩, 郝飞, 等. 基于YOLOv4和自适应锚框调整的谷穗检测方法[J]. 智慧农业(中英文), 2021, 3(1): 63-74.
  HAO W L, YU P Y, HAO F, et al. Foxtail millet ear detection approach based on YOLOv4 and adaptive anchor box adjustment[J]. Smart Agriculture, 2021, 3(1): 63-74.
24 FUENTES A, YOON S, KIM S C, et al. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition[J]. Sensors, 2017, 17(9): ID 2022.
25 QIAN S W, DU J M, ZHOU J A, et al. An effective pest detection method with automatic data augmentation strategy in the agricultural field[J]. Signal image and video processing, 2023, 17(2): 563-571.
26 YAN L J, WU K H, LIN J, et al. Identification and picking point positioning of tender tea shoots based on MR3P-TS model[J]. Frontiers in plant science, 2022, 13: ID 962391.
27 胡笑天, 王克俭, 王超, 等. 一种基于改进SSD的原木端面识别方法[J]. 林业工程学报, 2023, 8(1): 141-149.
  HU X T, WANG K J, WANG C, et al. Development of log end face recognition method based on improved SSD[J]. Journal of forestry engineering, 2023, 8(1): 141-149.
28 张振国, 邢振宇, 赵敏义, 等. 改进YOLOv3的复杂环境下红花丝检测方法[J]. 农业工程学报, 2023, 39(3): 162-170.
  ZHANG Z G, XING Z Y, ZHAO M Y, et al. Detecting safflower filaments using an improved YOLOv3 under complex environments[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(3): 162-170.
29 王卫星, 刘泽乾, 高鹏, 等. 基于改进YOLOv4的荔枝病虫害检测模型[J]. 农业机械学报, 2023, 54(5): 227-235.
  WANG W X, LIU Z Q, GAO P, et al. Detection of Litchi diseases and insect pests based on improved YOLOv4 model[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(5): 227-235.
30 GAI R L, CHEN N, YUAN H. A detection algorithm for cherry fruits based on the improved YOLOv4 model[J]. Neural computing and applications, 2023, 35(19): 13895-13906.
31 孙丰刚, 王云露, 兰鹏, 等. 基于改进YOLOv5s和迁移学习的苹果果实病害识别方法[J]. 农业工程学报, 2022, 38(11): 171-179.
  SUN F G, WANG Y L, LAN P, et al. Identification of apple fruit diseases using improved YOLOv5s and transfer learning[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(11): 171-179.
32 BARI BS, ISLAM N, RASHID M, et al. A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework[J]. PeerJ computer science, 2021: ID e432.
33 GONG X L, ZHANG S J. A high-precision detection method of apple leaf diseases using improved faster R-CNN[J]. Agriculture basel, 2023, 13(2): ID 240.
34 ZHOU G X, ZHANG W Z, CHEN A B, et al. Rapid detection of rice disease based on FCM-KM and faster R-CNN fusion[J]. IEEE access, 2019, 7: 143190-143206.
35 XIE X Y, MA Y, LIU B, et al. A deep-learning-based real-time detector for grape leaf diseases using improved convolutional neural networks[J]. Frontiers in plant science, 2020, 11: ID 751.
36 ZHAO S Y, LIU J Z, WU S. Multiple disease detection method for greenhouse-cultivated strawberry based on multiscale feature fusion Faster R_CNN[J]. Computers and electronics in agriculture, 2022, 199: ID 107176.
37 REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 779-788.
38 BHATT P V, SARANGI S, PAPPULA S. Detection of diseases and pests on images captured in uncontrolled conditions from tea plantations[C]// Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV. Baltimore, MD, USA. 2019, 11008: 73-82.
39 何海清, 严椰丽, 凌梦云, 等. 结合三维密集点云的无人机影像大豆覆盖度提取[J]. 农业工程学报, 2022, 38(2): 201-209.
  HE H Q, YAN Y L, LING M Y, et al. Extraction of soybean coverage from UAV images combined with 3D dense point cloud[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(2): 201-209.
40 CHANG L H, FAN H C, ZHU N N, et al. A two-stage approach for individual tree segmentation from TLS point clouds[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2022, 15: 8682-8693.
41 LI Z Y, CHEN P, SHUAI L Y, et al. A copy paste and semantic segmentation-based approach for the classification and assessment of significant rice diseases[J]. Plants, 2022, 11(22): ID 3174.
42 BARROS T, CONDE P, GONCALVES G, et al. Multispectral vineyard segmentation: A deep learning comparison stud[J]. Computers and electronics in agriculture, 2022, 195: ID 106782.
43 LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2015: 3431-3440.
44 RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[M]// Lecture notes in computer science. Cham: Springer International Publishing, 2015: 234-241.
45 HUANG X B, CHEN A B, ZHOU G X, et al. Tomato leaf disease detection system based on FC-SNDPN[J]. Multimedia tools and applications, 2023, 82(2): 2121-2144.
46 LI Q, JIA W, SUN M, et al. A novel green apple segmentation algorithm based on ensemble U-Net under complex orchard environment[J]. Computers and electronics in agriculture, 2021, 180: ID 105900.
47 LIU G Q, BAI L, ZHAO M Q, et al. Segmentation of wheat farmland with improved U-Net on drone images[J]. Journal of applied remote sensing, 2022, 16(3): ID 034511.
48 NARUSHIN V G, LU G, CUGLEY J, et al. A 2-D imaging-assisted geometrical transformation method for non-destructive evaluation of the volume and surface area of avian eggs[J]. Food control, 2020, 112: ID 107112.
49 ZHANG S W, WANG H X, HUANG W Z, et al. Plant diseased leaf segmentation and recognition by fusion of superpixel, K-means and PHOG[J]. Optik, 2018, 157: 866-872.
50 YUE Y J, LI X S, ZHAO H, et al. Image segmentation method of crop diseases based on improved segnet neural network[C]// 2020 IEEE International Conference on Mechatronics and Automation (ICMA). Piscataway, NJ, USA: IEEE, 2020: 1986-1991.
51 KHAN M A, AKRAM T, SHARIF M, et al. CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features[J]. Computers and electronics in agriculture, 2018, 155: 220-236.
52 TASSIS L M, TOZZI DE SOUZA J E, KROHLING R A. A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images[J]. Computers and electronics in agriculture, 2021, 186: ID 106191.
53 张明岳, 吴华瑞, 朱华吉. 基于卷积模型的农业问答语性特征抽取分析[J]. 农业机械学报, 2018, 49(12): 203-210.
  ZHANG M Y, WU H R, ZHU H J. Analysis of extraction of semantic feature in agricultural question and answer based on convolutional model[J]. Transactions of the Chinese society for agricultural machinery, 2018, 49(12): 203-210.
54 LUO W L, ZHANG L. Question text classification method of tourism based on deep learning model[J]. Wireless communications and mobile computing, 2022, 2022: 1-9.
55 王郝日钦, 吴华瑞, 冯帅, 等. 基于Attention_DenseCNN的水稻问答系统问句分类[J]. 农业机械学报, 2021, 52(7): 237-243.
  WANG H R Q, WU H R, FENG S, et al. Classification technology of rice questions in question answer system based on Attention_DenseCNN[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(7): 237-243.
56 PATIL R R, KUMAR S. Rice-fusion: A multimodality data fusion framework for rice disease diagnosis[J]. IEEE access, 2022, 10: 5207-5222.
57 KIRYO R, NIU G, DU PLESSIS M C, et al. Positive-unlabeled learning with non-negative risk estimator[EB/OL]. arXiv: , 2017.
58 ALAHADH S, HABIB S, ISLAM M, et al. An efficient pest detection framework with a medium-scale benchmark to increase the agricultural productivity[J]. Sensors, 2022, 22(24): ID 9749.
59 王文军, 余银峰. 考虑数据稀疏的知识图谱缺失连接自动补全算法[J]. 吉林大学学报(工学版), 2022, 52(6): 1428-1433.
  WANG W J, YU Y F. Automatic completion algorithm for missing links in nowledge graph considering data sparsity[J]. Journal of Jilin university (engineering and technology edition), 2022, 52(6): 1428-1433.
60 张宁豫, 谢辛, 陈想, 等. 基于知识协同微调的低资源知识图谱补全方法[J]. 软件学报, 2022, 33(10): 3531-3545.
  ZHANG N Y, XIE X, CHEN X, et al. Knowledge collaborative fine-tuning for low-resource knowledge graph completion[J]. Journal of software, 2022, 33(10): 3531-3545.
61 王郝日钦, 王晓敏, 缪祎晟, 等. 基于BERT-Attention-DenseBiGRU的农业问答社区问句相似度匹配[J]. 农业机械学报, 2022, 53(1): 244-252.
  WANG H R Q, WANG X M, MIAO Y S, et al. Densely connected BiGRU neural network based on BERT and attention mechanism for Chinese agriculture-related question similarity matching[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(1): 244-252.
62 赵宏, 郭岚, 陈志文, 等. 基于多模态融合与多层注意力的视频内容文本表述研究[J]. 计算机工程, 2022, 48(10): 45-54.
  ZHAO H, GUO L, CHEN Z W, et al. Research on text representation of video content based on multi-modal fusion and multi-layer attention[J]. Computer engineering, 2022, 48(10): 45-54.
63 ELAVARASAN D, VINCENT P M D R. A reinforced random forest model for enhanced crop yield prediction by integrating agrarian parameters[J]. Journal of ambient intelligence and humanized computing, 2021, 12(11): 10009-10022.
64 刘会丹, 万雪芬, 崔剑, 等. 基于深度强化学习的耕作层土壤水分、温度预测[J]. 华南农业大学学报, 2023, 44(1): 84-92.
  LIU H D, WAN X F, CUI J, et al. Moisture and temperature prediction in tillage layer based on deep reinforcement learning[J]. Journal of South China agricultural university, 2023, 44(1): 84-92.
65 宋浩楠, 赵刚, 王兴芬. 融合知识表示和深度强化学习的知识推理方法[J]. 计算机工程与应用, 2021, 57(19): 189-197.
  SONG H N, ZHAO G, WANG X F. Knowledge reasoning method combining knowledge representation with deep reinforcement learning[J]. Computer engineering and applications, 2021, 57(19): 189-197.
66 白京波. 思远农业: 互联网+现代农业社会化服务[J]. 农业工程技术, 2017, 37(12): 78-80.
  BAI J B. Philip burkart agriculture: Socialization service of modern agriculture in Internet plus[J]. Agricultural engineering technology, 2017, 37(12): 78-80.
67 姜芸, 王军, 杨继文. 基于遥感技术的黑土区耕地质量评价指标体系研究进展分析[J]. 测绘工程, 2023, 32(1): 1-7, 13.
  JIANG Y, WANG J, YANG J W. Research progress analysis of black soil region cultivated land quality evaluation index by remote sensing[J]. Engineering of surveying and mapping, 2023, 32(1): 1-7, 13.
68 钱凤魁, 项子璇, 王贺兴, 等. 基于最小数据集与LESA体系的县域耕地质量评价[J]. 农业工程学报, 2023, 39(8): 239-248.
  QIAN F K, XIANG Z X, WANG H X, et al. Evaluating cultivated land quality in County territory using the minimum data set, land evaluation and site assessment(LESA)[J]. Transactions of the Chinese society of agricultural engineering, 2023: 39(8): 239-248.
69 蒋绍淮, 周冬梅, 蔡立群. 山丹县耕地质量等级评价及肥力分析研究[J]. 国土与自然资源研究, 2023(3): 23-28.
  JIANG S H, ZHOU D M, CAI L Q. The evaluation of quality grade and nutrient analysis of cultivated land in Shandan County[J]. Territory & natural resources study, 2023(3): 23-28.
70 李建军, 白鹏飞. 我国智慧农业创新实践的现实挑战与应对策略[J]. 科学管理研究, 2023, 41(2): 127-134.
  LI J J, BAI P F. Realistic challenges and countermeasures of China's smart agriculture innovation practice[J]. Scientific management research, 2023, 41(2): 127-134.
71 MICHAEL C, LEE J. New approaches to irrigation scheduling of vegetables[J]. Horticulturae, 2017, 3(2): 1-20.
72 DOS SANTOS U J L, PESSIN G, COSTA C ADA, et al. AgriPrediction: A proactive Internet of Things model to anticipate problems and improve production in agricultural crops[J]. Computers and electronics in agriculture, 2019, 161: 202-213.
73 黄文江, 师越, 董莹莹, 等. 作物病虫害遥感监测研究进展与展望[J]. 智慧农业, 2019, 1(4): 1-11.
  HUANG W J, SHI Y, DONG Y Y, et al. Progress and prospects of crop diseases and pests monitoring by remote sensing[J]. Smart agriculture, 2019, 1(4): 1-11.
74 张凝, 杨贵军, 赵春江, 等. 作物病虫害高光谱遥感进展与展望[J]. 遥感学报, 2021, 25(1): 403-422.
  ZHANG N, YANG G J, ZHAO C J, et al. Progress and prospects of hyperspectral remote sensing technology for crop diseases and pests[J]. National remote sensing bulletin, 2021, 25(1): 403-422.
75 李鑫格, 项方林, 吴思雨, 等. 基于植被指数时序动态的冬小麦氮素营养诊断方法[J]. 麦类作物学报, 2022, 42(1): 109-119.
  LI X G, XIANG F L, WU S Y, et al. Diagnosis methods for nitrogen status based on the time-series vegetation index in winter wheat[J]. Journal of triticeae crops, 2022, 42(1): 109-119.
76 李艳, 张成才, 恒卫东. 基于深度学习的多源遥感反演麦田土壤墒情研究[J]. 节水灌溉, 2023(2): 57-64.
  LI Y, ZHANG C C, HENG W D. Soil moisture retrieving method based on depth learning by multi-source data[J]. Water saving irrigation, 2023(2): 57-64.
77 高荣华, 白强, 王荣, 等. 改进注意力机制的多叉树网络多作物早期病害识别方法[J]. 计算机科学, 2022, 49(S1): 363-369.
  GAO R H, BAI Q, WANG R, et al. Multi-tree network multi-crop early disease recognition method based on improved attention mechanism[J]. Computer science, 2022, 49(S1): 363-369.
78 张燕, 田国英, 杨英茹, 等. 基于SVM的设施番茄早疫病在线识别方法研究[J]. 农业机械学报, 2021, 52(S1): 125-133, 206.
  ZHANG Y, TIAN G Y, YANG Y R, et al. Online detection method of tomato early blight disease based on SVM[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(S1): 125-133, 206.
79 蔡娣, 路阳, 林立媛, 等. 基于稀疏自编码和SPSO-SVM的稻瘟病早期病害识别[J]. 吉林大学学报(信息科学版), 2022, 40(3): 416-423.
  CAI D, LU Y, LIN L Y, et al. Early disease identification of rice blast based on sparse automatic encoder and SPSO-SVM[J]. Journal of Jilin university (information science edition), 2022, 40(3): 416-423.
80 张熹. 基于高光谱成像的温室黄瓜霜霉病早期检测方法研究[D]. 杨凌: 西北农林科技大学, 2021.
  ZHANG X. Study on early detection method of greenhouse cucumber downy mildew based on hyperspectral imaging[D]. Yangling: Northwest A & F University, 2021.
81 KE G L, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM, 2017: 3149-3157.
82 CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2016: 785-794.
83 LIU Y W, ZHANG X, GAO Y X, et al. Improved CNN method for crop pest identification based on transfer learning[J]. Computational intelligence and neuroscience, 2022, 2022: ID 9709648.
84 张银萍, 朱双杰, 徐燕, 等. 基于机器视觉的猴头菇品质快速无损检测与分级[J]. 现代食品科技, 2023, 39(3): 239-246.
  ZHANG Y P, ZHU S J, XU Y, et al. Rapid non-destructive testing and grading of Hericium erinaceus based on machine vision[J]. Modern food science and technology, 2023, 39(3): 239-246.
85 吕正超. 基于深度学习的鸡翅品质检测与重量分级研究[D]. 泰安: 山东农业大学, 2022.
  LYU Z C. Research on quality detection and weight grading of chicken wings based on deep learning[D]. Taian: Shandong Agricultural University, 2022.
86 FITRI Z E, BASKARA A, MADJID A, et al. Comparison of classification for grading red dragon fruit (Hylocereus costaricensis)[J]. Jurnal nasional teknik elektro, 2022, 11(1): 43-49.
87 MESA A R, CHIANG J Y. Multi-input deep learning model with RGB and hyperspectral imaging for banana grading[J]. Agriculture, 2021, 11(8): ID 687.
88 ROPELEWSKA E, SABANCI K, ASLAN M F. Preservation effects evaluated using innovative models developed by machine learning on cucumber flesh[J]. European food research and technology, 2022, 248(7): 1929-1937.
89 孙传恒, 袁晟, 罗娜, 等. 基于区块链和边缘计算的水稻原产地溯源方法研究[J]. 农业机械学报, 2023, 54(5): 359-368.
  SUN C H, YUAN S, LUO N, et al. Traceability method of rice origin based on blockchain and edge computing[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(5): 359-368.
90 WANG Y J. Agricultural products price prediction based on improved RBF neural network model[J]. Applied artificial intelligence, 2023, 37(1): ID 2204600.
91 喻沩舸, 吴华瑞, 彭程. 基于Lasso回归和BP神经网络的蔬菜短期价格预测组合模型研究[J]. 智慧农业(中英文), 2020, 2(3): 108-117.
  YU W G, WU H R, PENG C. Short-term price forecast of vegetables based on combination model of lasso regression method and BP neural network[J]. Smart agriculture, 2020, 2(3): 108-117.
92 罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17, 5.
  LUO X W, LIAO J, HU L, et al. Research progress of intelligent agricultural machinery and practice of unmanned farm in China[J]. Journal of South China agricultural university, 2021, 42(6): 8-17, 5.
93 吴华瑞. 智能农机赋能蔬菜产业高质量发展[J]. 蔬菜, 2021(9): 1-10.
  WU H R. Intelligent agricultural machinery empowers high-quality development of vegetable industry[J]. Vegetables, 2021(9): 1-10.
94 赵春江, 文朝武, 林森, 等. 基于级联卷积神经网络的番茄花期识别检测方法[J]. 农业工程学报, 2020, 36(24): 143-152.
  ZHAO C J, WEN C W, LIN S, et al. Tomato florescence recognition and detection method based on cascaded neural network[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(24): 143-152.
95 龙洁花, 赵春江, 林森, 等. 改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法[J]. 农业工程学报, 2021, 37(18): 100-108.
  LONG J H, ZHAO C J, LIN S, et al. Segmentation method of the tomato fruits with different maturities under greenhouse environment based on improved Mask R-CNN[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(18): 100-108.
96 文朝武, 龙洁花, 张宇, 等. 基于3D视觉的番茄授粉花朵定位方法[J]. 农业机械学报, 2022, 53(8): 320-328.
  WEN C W, LONG J H, ZHANG Y, et al. Positioning method of tomato pollination flowers based on 3D vision[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(8): 320-328.
97 CHU L W. Study the operation process of factory greenhouse robot based on intelligent dispatching method[C]// 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). Piscataway, NJ: IEEE, 2022: 291-293.
98 杨国峰, 杨勇. 基于BERT的常见作物病害问答系统问句分类[J]. 计算机应用, 2020, 40(6): 1580-1586.
  YANG G F, YANG Y. Question classification of common crop disease question answering system based on BERT[J]. Journal of computer applications, 2020, 40(6): 1580-1586.
99 张博凯, 李想. 基于知识图谱的Android端农技智能问答系统研究[J]. 农业机械学报, 2021, 52(S1): 164-171.
  ZHANG B K, LI X. Design of agricultural question answering system based on knowledge graph[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(S1): 164-171.
100 张彩丽, 吴赛赛, 李玮, 等. 面向农作物科学施肥管理与土壤肥力查询的农业智能问答系统[J]. 园艺与种苗, 2022, 42(10): 84-86, 92.
  ZHANG C L, WU S S, LI W, et al. Agricultural intelligent question answering system for crop scientific fertilization management and soil fertility[J]. Horticulture & seed, 2022, 42(10): 84-86, 92.
101 THELWALL M, KOUSHA K. ResearchGate: Disseminating, communicating, and measuring scholarship?[J]. Journal of the association for information science and technology, 2015, 66(5): 876-889.
102 VAN NOORDEN R. Online collaboration: Scientists and the social network[J]. Nature, 2014, 512(7513): 126-129.
Outlines

/