Artificial Intelligence-Driven High-Quality Development of New Quality Productive Forces in Animal Husbandry: Restraining Factors, Generation Logic and Promotion Paths
Received date: 2024-07-12
Online published: 2025-01-22
Supported by
National Key Research and Development Program(2024YFD1300604); National Natural Science Foundation of China(42301460); Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences under Grant(CAAS-ASTIP-2024-AII); Central Public- interest Scientific Institution Basal Research Fund under Grants(JBYW-AII-2024-16/18/19/23/28/35/36/40); Beijing Smart Agriculture Innovation Consortium Project(BAIC10-2024); Open Fund from Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Development(2023nyzbsys09)
Copyright
[Significance] Developing new quality productive forces is of great significance for promoting high-quality development of animal husbandry. However, there is currently limited research on new quality productivity in animal husbandry, and there is a lack of in-depth analysis on its connotation, characteristics, constraints, and promotion path. [Progress] This article conducts a systematic study on the high-quality development of animal husbandry productive forces driven by artificial intelligence. The new quality productive forces of animal husbandry is led by cutting-edge technological innovations such as biotechnology, information technology, and green technology, with digitalization, greening, and ecologicalization as the direction of industrial upgrading. Its basic connotation is manifested as higher quality workers, more advanced labor materials, and a wider range of labor objects. Compared with traditional productive forces, the new quality productive forces of animal husbandry is an advanced productive forces guided by technological innovation, new development concepts, and centered on the improvement of total factor productive forces. It has significant characteristics of high production efficiency, good industrial benefits, and strong sustainable development capabilities. China's new quality productive forces in animal husbandry has a good foundation for development, but it also faces constraints such as insufficient innovation in animal husbandry breeding technology, weak core competitiveness, low mechanization rate of animal husbandry, weak independent research and development capabilities of intelligent equipment, urgent demand for "machine replacement", shortcomings in the quantity and quality of animal husbandry talents, low degree of scale of animal husbandry, and limited level of intelligent management. Artificial intelligence in animal husbandry can be widely used in environmental control, precision feeding, health monitoring and disease prevention and control, supply chain optimization and other fields. Artificial intelligence, through revolutionary breakthroughs in animal husbandry technology represented by digital technology, innovative allocation of productive forces factors in animal husbandry linked by data elements, and innovative allocation of productive forces factors in animal husbandry adapted to the digital economy, has given birth to new quality productive forces in animal husbandry and empowered the high-quality development of animal husbandry. [Conclusions and Prospects] This article proposes a path to promote the development of new quality productive forces in animal husbandry by improving the institutional mechanism of artificial intelligence to promote the development of modern animal husbandry industry, strengthening the application of artificial intelligence in animal husbandry technology innovation and promotion, and improving the management level of artificial intelligence in the entire industry chain of animal husbandry.
LIU Jifang , ZHOU Xiangyang , LI Min , HAN Shuqing , GUO Leifeng , CHI Liang , YANG Lu , WU Jianzhai . Artificial Intelligence-Driven High-Quality Development of New Quality Productive Forces in Animal Husbandry: Restraining Factors, Generation Logic and Promotion Paths[J]. Smart Agriculture, 2025 : 1 -13 . DOI: 10.12133/j.smartag.SA202407010
1 | 习近平. 发展新质生产力是推动高质量发展的内在要求和重要着力点[J]. 奋斗, 2024(11): 4-8. |
2 | 马晓河, 杨祥雪. 以加快形成新质生产力推动农业高质量发展[J]. 农业经济问题, 2024, 45(4): 4-12. |
3 | 姜长云. 农业新质生产力: 内涵特征、发展重点、面临制约和政策建议[J]. 南京农业大学学报(社会科学版), 2024, 24(3): 1-17. |
4 | 罗必良, 耿鹏鹏. 农业新质生产力: 理论脉络、基本内核与提升路径[J]. 农业经济问题, 2024, 45(4): 13-26. |
5 | 魏后凯, 吴广昊. 以新质生产力引领现代化大农业发展[J]. 改革, 2024(5): 1-11. |
6 | 唐瑜嵘, 沈明霞, 薛鸿翔, 等. 人工智能技术在畜禽养殖业的发展现状与展望 [J]. 智能化农业装备学报(中英文), 2023, 4 (1): 1-16. |
7 | |
8 | |
9 | 秦英栋, 贾文珅. 基于NB-IoT网络的兔舍环境实时监测系统[J]. 智慧农业(中英文), 2023, 5 (1): 155-165. |
10 | |
11 | 谢秋菊, 吴梦茹, 包军, 等. 融合注意力机制的个体猪脸识别[J]. 农业工程学报, 2022, 38(7): 180-188. |
12 | |
13 | 周意, 毛宽民. 基于YOLO-Unet组合网络的牛只个体识别方法研究[J/OL]. 计算机科学, 1-13. [2025-01-14]. |
14 | |
15 | |
16 | 赵一名, 沈明霞, 刘龙申, 等. 基于改进YOLOv5s和图像融合的笼养鸡死鸡检测方法研究[J]. 南京农业大学学报, 2024, 47(2): 369-382. |
17 | 刘峰, 吴文杰, 刘小磊, 等. 计算机视觉与深度学习在猪只识别中的研究进展[J]. 华中农业大学学报, 2023, 42(3): 47-56. |
18 | |
19 | 李艳文, 李菊霞, 纳腾潇, 等. 基于YOLOX-NGS的群养猪只攻击行为识别[J]. 农业工程学报, 2023, 39(24): 177-184. |
20 | |
21 | |
22 | |
23 | |
24 | 姚裔芃, 徐晨, 陈鸿基, 等. 基于关键点检测和多目标跟踪的猪只体尺估计[J]. 华南农业大学学报, 2024, 45(5): 722-729. |
25 | 耿艳利, 季燕凯, 岳晓东, 等. 基于点云语义分割的猪只体尺测量方法研究[J]. 农业机械学报, 2023, 54(7): 332-338, 380. |
26 | 翁智, 范琦, 郑志强. 基于多模态图像信息及改进实例分割网络的肉牛体尺自动测量方法[J]. 智慧农业(中英文), 2024, 6(4): 64-75. |
27 | 熊本海, 蒋林树, 杨亮, 等. 种猪生产性能测定系统开发与性能测试[J]. 农业工程学报, 2017, 33(9): 174-179. |
28 | 黄昊, 刘俊灵, 胡腾达, 等. 智能化母猪饲喂控制系统设计与试验[J]. 中国农机化学报, 2021, 42(10): 78-86. |
29 | |
30 | 刘艳昌, 郭宇戈, 张志霞, 等. 基于LoRa的生猪体征监测系统设计与实现[J]. 中国农机化学报, 2024, 45(4): 66-71, 140. |
31 | |
32 | |
33 | |
34 | 吴振邦, 陈泽锴, 田绪红, 等. 基于3D卷积视频分析的猪步态评分方法[J]. 华南农业大学学报, 2024, 45(5): 743-753. |
35 | 张博, 罗维平. 基于Swin-Unet的奶牛饲料消耗状态监测方法[J]. 华南农业大学学报, 2024, 45(5): 754-763. |
36 | |
37 | 沈明霞, 王梦雨, 刘龙申, 等. 基于深度神经网络的猪咳嗽声识别方法[J]. 农业机械学报, 2022, 53(5): 257-266. |
38 | |
39 | 杜晓冬, 滕光辉, 刘慕霖, 等. 基于轻量级卷积神经网络的种鸡发声识别方法[J]. 农业机械学报, 2022, 53(10): 271-276. |
40 | 刘剑锋, 邱小田, 周磊, 等. 猪全产业链育种技术及其国内外应用现状[J]. 中国畜牧杂志, 2024, 60(7): 1-5. |
41 | 中华人民共和国教育部. 高等教育分学科门类研究生数(总计)[EB/OL]. (2023-12-29) [2024-06-29]. |
42 | 何沛桐, 张建华, 张凝, 等. 基于视觉感知的畜禽智慧养殖管理与疫病诊断研究进展[J]. 中国农业大学学报, 2023, 28(10): 141-165. |
/
〈 |
|
〉 |