Smart Agriculture ›› 2020, Vol. 2 ›› Issue (3): 139-152.doi: 10.12133/j.smartag.2020.2.3.202006-SA002
• Information Processing and Decision Making • Previous Articles
CHEN Ailian1,2(), LI Jiayu3, ZHANG Shengjun3, ZHU Yuxia1,2(
), ZHAO Sijian1,2, SUN Wei1,2, ZHANG Qiao1,2
Received:
2020-06-05
Revised:
2020-09-18
Online:
2020-09-30
Published:
2020-12-09
corresponding author:
Yuxia ZHU
E-mail:chenailian@caas.cn;zhuyuxia@caas.cn
CLC Number:
CHEN Ailian, LI Jiayu, ZHANG Shengjun, ZHU Yuxia, ZHAO Sijian, SUN Wei, ZHANG Qiao. Application of Satellite Remote Sensing Yield Estimation Technology in Regional Revenue Protection Crop Insurance: A Case of Soybean[J]. Smart Agriculture, 2020, 2(3): 139-152.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2020.2.3.202006-SA002
Table 2
Pearson correlation coefficients between NDVI, biophisical parameters, meteorological parameter and yield
变量 | 与产量相关系数 | 变量 | 与产量相关系数 |
---|---|---|---|
0823NDVI | 0.644** | 0922Cw | 0.356** |
0907LAI | 0.641** | 0803Cab | 0.351** |
0907Cab | 0.638** | 0922NDVI | 0.348** |
0907FaPar | 0.633** | 0808Cw | 0.333** |
0823FaPar | 0.628** | 0803FCover | 0.320** |
0907FCover | 0.618** | 0724FCover | 0.290* |
0823FCover | 0.615** | 0724FaPar | 0.289* |
0823Cab | 0.611** | Max07FCover | 0.289* |
0907NDVI | 0.606** | Max07FaPar | 0.288* |
0823LAI | 0.603** | 0808Cab | 0.281* |
0907Cw | 0.528** | 0808FCover | 0.274* |
0922FaPar | 0.486** | 0724LAI | 0.273* |
1002_0823 | -0.482** | 0808FaPar | 0.268* |
0823_0624 | 0.480** | 0803FaPar | 0.268* |
0922FCover | 0.475** | 0803NDVI | 0.261* |
0922LAI | 0.449** | TRMM2018091 | 0.257* |
0823Cw | 0.437** | 20180727_Day_LST | 0.255* |
0922Cab | 0.437** | 20180711_Day_LST | 0.237* |
0803LAI | 0.402** | 20180828_Night_LST | 0.235* |
0927NDVI | 0.393** | Max07NDVI | 0.232* |
0808LAI | 0.376** |
Table 3
Pearson correlation coefficients between NDVI and biophical parameters on Aug. 23 and Sep.7
因子 | 0823NDVI | 0907NDVI | 0907LAI | 0907FaPar | 0907FCover | 0907Cab | 0907Cw |
---|---|---|---|---|---|---|---|
0823LAI | 0.816** | 0.735** | 0.812** | 0.802** | 0.780** | 0.802** | 0.561** |
0823FCover | 0.920** | 0.846** | 0.833** | 0.857** | 0.847** | 0.815** | 0.603** |
0823FaPar | 0.908** | 0.837** | 0.849** | 0.867** | 0.851** | 0.836** | 0.633** |
0823Cab | 0.817** | 0.734** | 0.834** | 0.819** | 0.793** | 0.833** | 0.623** |
0823Cw | 0.474** | 0.467** | 0.556** | 0.516** | 0.479** | 0.562** | 0.593** |
0823NDVI | 1.000 | 0.879** | 0.779** | 0.813** | 0.813** | 0.744** | 0.597** |
0907NDVI | 0.879** | 1.000 | 0.825** | 0.889** | 0.899** | 0.791** | 0.591** |
0907LAI | 0.779** | 0.825** | 1.000 | 0.982** | 0.968** | 0.989** | 0.837** |
0907FaPar | 0.813** | 0.889** | 0.982** | 1.000 | 0.995** | 0.960** | 0.797** |
0907FCover | 0.813** | 0.899** | 0.968** | 0.995** | 1.000 | 0.940** | 0.772** |
0907Cab | 0.744** | 0.791** | 0.989** | 0.960** | 0.940** | 1 | 0.828** |
0907Cw | 0.597** | 0.591** | 0.837** | 0.797** | 0.772** | 0.828** | 1 |
Table 4
Summary of soybeans yield linear models
模型序号 | 模型 | R2 | 标准误 | F | 输入变量 | 标准化系数 | 变量显著性 |
---|---|---|---|---|---|---|---|
1 | Y=-282.356+547.583×0823NDVI (7) | 0.415** | 47.554 | 50.379 | (常量) | 0.000 | |
0823NDVI | 0.644 | 0.000 | |||||
2 | Y=-171.365+313.127×0823NDVI+35.154×0907LAI (8) | 0.464** | 45.824 | 30.359 | (常量) | 0.025 | |
0823NDVI | 0.386 | 0.010 | |||||
0907LAI | 0.354 | 0.013 | |||||
3 | Y=-187.199+289.032×0823NDVI+30.816×0907LAI+957.102×0823Cw-12.239×NDVI(1002-0823) (9) | 0.471** | 46.210 | 15.136 | (常量) | 0.051 | |
0823NDVI | 0.340 | 0.049 | |||||
0907LAI | 0.311 | 0.042 | |||||
0823Cw | 0.093 | 0.388 | |||||
NDVI(1002-0823) | -0.025 | 0.845 | |||||
4 | Y=2025.482+323.644×0823NDVI+33.527×0907LAI+22.704×K_MOD11_10+8.307×K_MOD11_14-16.884×TRMM091+0.923×K_MOD11_23 (10) | 0.482** | 46.407 | 10.242 | (常量) | 0.640 | |
0823NDVI | 0.381 | 0.018 | |||||
0907LAI | 0.338 | 0.022 | |||||
K_MOD11_10 | 0.106 | 0.348 | |||||
K_MOD11_14 | -0.196 | 0.208 | |||||
TRMM091 | 0.163 | 0.207 | |||||
K_MOD11_23 | 0.013 | 0.902 | |||||
5 | Y=-285.649+509.074×0823NDVI+4.999×0907LAI+1349.340×0823Cw-95.854×NDVI(1002-0823)-309.911×NDVI(0823-0624)+231.163×0922FAPAR (11) | 0.520** | 44.684 | 11.912 | (常量) | 0.005 | |
0823NDVI | 0.599 | 0.007 | |||||
0907LAI | 0.050 | 0.789 | |||||
0823Cw | 0.131 | 0.219 | |||||
NDVI(1002-0823) | -0.196 | 0.176 | |||||
NDVI(0823-0624) | -0.428 | 0.025 | |||||
0922FAPAR | 0.320 | 0.036 |
1 | 艾思言. 定西市马铃薯区域产量保险的适用性研究[J]. 甘肃农业, 2018(15): 21-26. |
AI S. Study on the applicability of potato yield insurance in Dingxi city[J]. Gansu Agriculture, 2018(15): 21-26. | |
2 | 李艳, 陈盛伟. 农作物区域产量保险研究进展[J]. 山东农业科学, 2018, 50(7): 161-166. |
LI Y, CHEN S. Research review of crop area yield insurance[J]. Shandong Agricultural Sciences, 2018, 50(7): 161-166. | |
3 | 张峭, 李越, 郑茗曦. 农业指数保险的发展、应用与建议[J]. 农村金融研究, 2018(6): 14-20. |
ZHANG Q, LI Y, ZHENG M. Development, application and recommendations of agricultural index insurance[J]. Rural Finance Research, 2018(6): 14-20. | |
4 | 汪必旺, 张峭. 美国农作物收入保险规模演变及展望[J]. 农业展望, 2018, 14(6): 34-40. |
WANG B, ZHANG Q. Scale evolution of the U.S. crop revenue insurance and its prospect[J]. Agricultural Outlook, 2018, 14(6): 34-40. | |
5 | 庹国柱, 张峭. 论我国农业保险的政策目标[J]. 保险研究, 2018(7): 7-15. |
TUO G, ZHANG Q. On the policy objectives of agricultural insurance in China[J]. Agricultural Research, 2018(7): 7-15. | |
6 | 张峭. 农产品价格"保险+期货"的实践探索[N]. 粮油市场报, 2017-07-29(B03). |
ZHANG Q. Practical exploration of agricultural product prices "insurance + futures" [N]. Grain and Oil Market News, 2017-07-29(B03). | |
7 | 李越, 张峭, 王克. 中国农业保险保障水平现状、问题与建议(下)[N]. 中国保险报, 2016-11-27(004). |
LI Y, ZHANG Q, WANG K. The current situation, problems and suggestions of China's agricultural insurance protection level (Part2)[N]. China Insurance News, 2016-11-27(004). | |
8 | 刘振功. 基于遥感技术的农业保险业务模式创新研究[D]. 济南: 山东大学, 2016. |
LIU Z. Research on the innovation of agricultural insurance business model based on remote sensing technology [D]. Jinan: Shandong University, 2016. | |
9 | 葛瑞华. 农业保险中信息技术的应用现状与问题研究[D]. 成都: 成都理工大学, 2014. |
GE R. Research on the application status and problems of information technology in agricultural insurance[D]. Chengdu: Chengdu University of Technology, 2014 | |
10 | 蒙继华, 付伟, 徐晋, 等. 遥感在种植业保险估损中的应用[J]. 遥感技术与应用, 2017(2): 238-246. |
Meng J, Fu W, Xu J, et al. Application of remote sensing in planting industry insurance loss estimation[J]. Remote Sensing Technology and Application, 2017(2): 238-246. | |
11 | 祁鑫. 遥感技术应用于农业保险业务模式[J]. 创新农技服务, 2017, 34(14): 171. |
QI X. Remote sensing technology applied to agricultural insurance business model[J]. Innovative Agricultural Technology Service, 2017, 34(14): 171. | |
12 | HUANG J, MA H, SEDANO F, et al. Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST-PROSAIL model[J]. European Journal of Agronomy, 2019, 102: 1-13. |
13 | FRANCH B, VERMOTE E F, SKAKUN S, et al. Remote sensing based yield monitoring: Application to winter wheat in United States and Ukraine[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 76: 112-127. |
14 | JIN X, KUMAR L, LI Z, et al. A review of data assimilation of remote sensing and crop models[J]. European Journal of Agronomy, 2018, 92: 141-152. |
15 | SCHWALBERT R A, AMADO T J C, NIETO L, et al. Forecasting maize yield at field scale based on high-resolution satellite imagery[J]. Biosystems Engineering, 2018, 171: 179-192. |
16 | 苏伟, 侯宁, 李琪, 等. 基于Sentinel-2遥感影像的玉米冠层叶面积指数反演[J]. 农业机械学报, 2018, 49(1): 151-156. |
SU W, HOU N, LI Q, et al. Retrieving leaf area index of corn canopy based on Sentinel-2 remote sensing image[J]. Transactions of the CSAM, 2018, 49(1): 151-156. | |
17 | 彭代亮, 黄敬峰, 王福民, 等. 基于分区的水稻总产遥感估算研究[J]. 中国科学:信息科学, 2010, 40(S1): 184-195. |
PENG D, HUANG J, WANG F, et al. Research on remote sensing estimation of total rice yield based on subregions[J]. Science China: Information Science, 2010, 40(S1): 184-195. | |
18 | YU N, LI L, SCHMITZ N, et al. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform[J]. Remote Sensing of Environment, 2016, 187: 91-101. |
19 | MAIMAITIJIANG, MAITINIYAZI, SAGANVASIT, SIDIKEPAHEDING, et al. Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from unmanned aerial system-based RGB imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151: 27-41. |
20 | GUSSO A, DUCATI J R, VERONEZ M R, et al. Spectral model for soybean yield estimate using MODIS/EVI data[J]. International Journal of Geosciences, 2013, 4: 1233-1241. |
21 | KROSS A, MCNAIRN H, LAPEN D, et al. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 34: 235-248. |
22 | 齐波, 张宁, 赵团结, 等. 利用高光谱技术估测大豆育种材料的叶面积指数[J]. 作物学报, 2015, 41(7): 1073-1085. |
QI B, ZHANG N, ZHAO T, et al. Prediction of leaf area index using hyperspectral remote sensing in breeding programs of soybean[J]. Acta Agronomica Sinica, 2015, 41(7): 1073-1085. | |
23 | 陆国政, 杨贵军, 赵晓庆, 等. 基于多载荷无人机遥感的大豆地上鲜生物量反演[J]. 大豆科学, 2017, 36(1): 41-50. |
LU G, YANG G, ZHAO X, et al. Inversion of soybean fresh biomass based on multi-payload unmanned aerial vehicles (UAVs)[J]. Soybean Science, 2017, 36(1): 41-50. | |
24 | 吴琼, 齐波, 赵团结, 等. 高光谱遥感估测大豆冠层生长和籽粒产量的探讨[J]. 作物学报, 2013, 39(2): 309-318. |
WU Q, QI B, ZHAO T, et al. A tentative study on utilization of canopy hyperspectral reflectance to estimate canopy growth and seed yield in soybean[J]. Acta Agronomica Sinica, 2013, 39(2): 309-318. | |
25 | 张宁. 基于GreenSeeker主动遥感的大豆NDVI/RVI分析与籽粒产量估测的初步研究[D]. 南京: 南京农业大学, 2013. |
ZHANG N, A preliminary study on soybean NDVI/RVI analysis and grain yield estimation based on GreenSeeker active remote sensing [D]. Nanjing: Nanjing Agricultural University, 2013. | |
26 | 赵晓庆, 杨贵军, 刘建刚, 等. 基于无人机载高光谱空间尺度优化的大豆育种产量估算[J]. 农业工程学报, 2017, 33(1): 110-116. |
ZHAO X, YANG G, LIU J, et al. Estimation of soybean breeding yield based on optimization of spatial scale of UAV hyperspectral image[J]. Transactions of the CSAE, 2017, 33(1): 110-116. | |
27 | 张淮栋, 陈争光, 张成龙, 基于高分二号-NDVI的大豆遥感估产的时相选择[J]. 湖北农业科学, 2018, 57(6): 103-108. |
ZHANG H, CHEN Z, ZHANG C, Time selection of soybean yield estimation based on Gaofen-2-NDVI[J]. Hubei Agricultural Sciences,2018, 57(6): 103-108. | |
28 | JACQUEMOUD S, VERHOEF W, BARET F, et al. PROSPECT+SAIL models: A review of use for vegetation characterization[J]. Remote Sensing of Environment, 2009, 113: 56-66. |
29 | 赵思健, 张峭, 陈敬敏. 大数据视角下的农业保险创新与提升[J]. 保险理论与实践, 2017(12): 22-42. |
ZHAO S, ZHANG Q, CHEN J. Innovation and improvement of agricultural insurance from the perspective of big data[J]. Insurance Theory and Practice, 2017(12): 22-42 | |
30 | 赵思健, 张峭. 农业保险科技的现状、体系与展望[J]. 中国保险, 2018(7): 28-35. |
ZHAO S, ZHANG Q. The current situation, system and prospect of agricultural insurance technology[J]. China Insurance, 2018(7): 28-35. |
[1] | LI Zhijun, YANG Shenghui, SHI Deshuai, LIU Xingxing, ZHENG Yongjun. Yield Estimation Method of Apple Tree Based on Improved Lightweight YOLOv5 [J]. Smart Agriculture, 2021, 3(2): 100-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||