1 | 黑龙江省佳木斯农业学校, 江苏省苏州农业学校.果树栽培学总论[M]. 北京: 中国农业出版社, 2009. | 1 | Jiamusi Agricultural School of Heilongjiang province, Suzhou Agricultural School of Jiangsu province. General introduction to fruit cultivation[M]. Beijing: China Agriculture Press, 2009. | 2 | 王少敏, 张毅, 高华军, 等. 苹果套袋栽培技术[M]. 济南: 山东科学技术出版社, 2006. | 2 | WANG S, ZHANG Y, GAO H, et al. Apple bagging cultivation technology[M]. Jinan: Shandong Science and Technology Press, 2006. | 3 | PAPAGEORGIOU E I, AGGELOPOULOU K D, GEMTOS T A, et al. Yield prediction in apples using fuzzy cognitive map learning approach[J]. Computers and Electronics in Agriculture, 2013, 91: 19-29. | 4 | AGGELOPOULOU A D, BOCHTIS D, FOUNTAS S, et al. Yield prediction in apple orchards based on image processing[J]. Precision Agriculture, 2011, 12(3): 448-456. | 5 | ZHOU R, DAMEROW L, SUN Y, et al. Using colour features of cv.'Gala' apple fruits in an orchard in image processing to predict yield[J]. Precision Agriculture, 2012, 13(5): 568-580. | 6 | 程洪, DAMEROW L, BLANKE M, 等. 基于树冠图像特征的苹果园神经网络估产模型[J]. 农业机械学报, 2015, 46(1): 14-19. | 6 | CHENG H, DAMEROW L, BLANKE M, et al. Ann model for apple yield estimation based on feature of tree image[J]. Transactions of the CSAM, 2015, 46(1): 14-19. | 7 | CRTOMIR R, CVELBAR U, TOJNKO S, et al. Application of neural networks and image visualization for early predicted of apple yield[J]. Erwerbs-Obstbau, 2012, 54(2): 69-76. | 8 | ROY P, KISLAY A, PLONSKI P, et al. Vision-based preharvest yield mapping for apple orchards[J]. Computers and Electronics in Agriculture, 2019, 164: ID 104897. | 9 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time objectdetection[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2016: 779-788. | 10 | REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2017: 7263-7271. | 11 | REDMON J, FARHADI A. YOLO v3: An incremental improvement[EB/OL]. 2018. arXiv: . | 12 | BOCHKOVSKIY A, WANG C, LIAO H. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. 2020. arXiv: . | 13 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. Cham, Switzerland: Springer, 2016: 21-37. | 14 | ZHANG S, WEN L, BIAN X, et al. Single-shot refinement neural network for object detection[C]// The IEEE Conference on Computer Vision and Pattern Reco-gnition. Piscataway, New York, USA: IEEE, 2018: 4203-4212. | 15 | WANG D, ZHANG B, CAO Y, et al. SFSSD: Shallow feature fusion single shot multibox detector[C]// International Conference in Communications, Signal Processing, and Systems. Cham, Switzerland: Springer, 2019: 2590-2598. | 16 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2014: 580-587. | 17 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision. Piscataway, New York, USA: IEEE, 2015: 1440-1448. | 18 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. | 19 | 周伟鸿, 朱思霖. 基于深度学习技术的智慧考场方案的应用探究[J]. 信息技术与信息化, 2020(12): 224-227. | 19 | ZHOU W, ZHU S. Research on the application of smart examination room solutions based on deep learning technology[J]. Information Technology and Informatization, 2020(12): 224-227. | 20 | 王沣. 改进YOLOv5的口罩和安全帽佩戴人工智能检测识别算法[J]. 建筑与预算, 2020(11): 67-69. | 20 | WANG F. Artificial intelligence detection and recognition algorithm for masks and helmets based on improved YOLOv5[J]. Construction and Budget, 2020(11): 67-69. | 21 | WANG C Y, LIAO H Y M, YEH I H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]// The IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, WA, USA: CVPRW, 2020: 390-391. | 22 | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detect-ion[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2017: 2117-2125. | 23 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2018: 8759-8768. | 24 | 李德鑫, 闫志刚, 孙久运. 基于无人机视觉的河道漂浮垃圾分类检测技术研究[J/OL]. 金属矿山: 1-11.[2021-06-20]. . | 24 | LI D, YAN Z, SUN J. Study on classification and detection technology of river floating garbage based on UAV vision[J/OL]. Metal Mine: 1-11. [2021-06-20]. . | 25 | SIFRE L, MALLAT S. Rigid-motion scattering for texture classification[J]. Computer Science, 2014, 3559: 501-515. |
|