1 |
ZHANG J, WANG N, YUAN L, et al. Discrimination of winter wheat disease and insect stresses using continuous wavelet features extracted from foliar spectral measurements[J]. Biosystems Engineering, 2017, 162: 20-29.
|
2 |
FENG W, SHEN W Y, HE L, et al. Improved remote sensing detection of wheat powdery mildew using dual-green vegetation indices[J]. Precision Agriculture, 2016, 17(5): 608-627.
|
3 |
GALLEGO F J, KUSSUL N, SKAKUN S, et al. Efficiency assessment of using satellite data for crop area estimation in Ukraine[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 29: 22-30.
|
4 |
SETHY P K, BARPANDA N K, RATH A K, et al. Image processing techniques for diagnosing rice plant disease: A survey[J]. Procedia Computer Science, 2020, 167: 516-530.
|
5 |
YANG C. Remote sensing and precision agriculture technologies for crop disease detection and management with a practical application example[J]. Engineering, 2020, 6(5): 528-532.
|
6 |
ZHENG Q, YE H, HUANG W, et al. Integrating spectral information and meteorological data to monitor wheat yellow rust at a regional scale: A case study[J]. Remote Sensing, 2021, 13(2): ID 278.
|
7 |
HUANG W J, LAMB D W, NIU Z, et al. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging[J]. Precision Agriculture, 2007, 8(4-5): 187-197.
|
8 |
ZHANG J C, PU R L, WANG J H, et al. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements[J]. Computers and Electronics in Agriculture, 2012, 85: 13-23.
|
9 |
LUO J H, ZHAO C J, HUANG W J, et al. Discriminating wheat aphid damage degree using 2-dimensional feature space derived from Landsat 5 TM[J]. Sensor Letters, 2012, 10(1-2): 608-614.
|
10 |
ZHENG Q, HUANG W, CUI X, et al. New spectral index for detecting wheat yellow rust using sentinel-2 multispectral imagery[J]. Sensors, 2018, 18(3): ID 868.
|
11 |
HE L, QI S, DUAN J, et al. Monitoring of Wheat powdery mildew disease severity using multiangle hyperspectral remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(2): 979-990.
|
12 |
ZHAO J, FANG Y, CHU G, et al. Identification of leaf-scale wheat powdery mildew (Blumeria graminis f. sp. Tritici) combining hyperspectral imaging and an SVM classifier[J]. Plants, 2020, 9(8): ID 936.
|
13 |
KHAN I H, LIU H, LI W, et al. Early detection of powdery mildew disease and accurate quantification of its severity using hyperspectral images in wheat[J]. Remote Sensing, 2021, 13(18): ID 3612.
|
14 |
ZHAO J, XU C, XU J, et al. Forecasting the wheat powdery mildew (Blumeria graminis f. Sp. tritici) using a remote sensing-based decision-tree classification at a provincial scale[J]. Australasian Plant Pathology, 2018, 47(1): 53-61.
|
15 |
LIANG W, CARBERRY P, WANG G, et al. Quantifying the yield gap in wheat-maize cropping systems of the Hebei Plain, China[J]. Field Crops Research, 2011, 124(2): 180-185.
|
16 |
CHEN H, ZHANG H, LI Y. Review on research of meteorological conditions and prediction methods of crop disease and insect pest[J]. Chinese Journal of Agrometeorology, 2007, 28(2): 212-216.
|
17 |
YUAN L, PU R L, ZHANG J C, et al. Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale[J]. Precision Agriculture, 2016, 17(3): 332-348.
|
18 |
LOVELAND T R, IRONS J R. Landsat 8: The plans, the reality, and the legacy[J]. Remote Sensing of Environment, 2016, 185: 1-6.
|
19 |
WANG W, LIANG S, MEYERS T. Validating MODIS land surface temperature products using long-term nighttime ground measurements[J]. Remote Sensing of Environment, 2008, 112(3): 623-635.
|
20 |
HUANG L, JIANG J, HUANG W, et al. Wheat yellow rust monitoring based on Sentinel-2 Image and BPNN model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 178-185.
|
21 |
LIU R, ZAHNG S, JIA R. Application of feature selection method in building information extracting from high resolution remote sensing image[J]. Bulletin of Surveying and Mapping, 2018, (2):126-130.
|
22 |
BAO W, ZHAO J, HU G, et al. Identification of wheat leaf diseases and their severity based on elliptical-maximum margin criterion metric learning[J]. Sustainable Computing: Informatics and Systems, 2021, 30: ID 100526.
|