1 | 朱海明, 程启方. 瑞典牛奶检测分级付款系统简介[J]. 中国奶牛, 1997(4): 52-54. | 1 | ZHU H, CHENG Q. Brief introduction of Swedish milk testing grading payment system[J]. China Dairy Cattle, 1997(4): 52-54. | 2 | 史慧茹, 姜瞻梅, 田波. 牛乳体细胞数的检测方法[J]. 畜牧与饲料科学, 2008(2): 86-88. | 2 | SHI H, JIANG Z, TIAN B. Method for detecting somatic cell count in bovine milk[J]. Animal Husbandry and Feed Science, 2008(2): 86-88. | 3 | 陈贺, 王帅, 陈红玲. 乌鲁木齐地区生鲜牛乳质量分级研究[J]. 农村科技, 2017(8): 60-62. | 3 | CHEN H, WANG S, CHEN H. Study on the quality classification of fresh milk in Urumqi area[J]. Rural Science & Technology, 2017(8): 60-62. | 4 | SMITH K L. Standards for somatic cells in milk: Physiologicaland regulatory[J]. IDF Mastitis Newslett, 1995, 144 (21): 7-9. | 5 | KOLDWIJ E, EMANWLSON U. Relation of milk production lossto milk somatic cell count[J]. ACTA Vet Scand, 1999, 40: 47-56. | 6 | GONDIM C, JUNQUEIRA R G, VITORINO C D S S, et al. Detection of several common adulterants in raw milk by MID-infrared spectroscopy and one-class and multi-class multivariate strategies[J]. Food Chemistry, 2017, 230: 68-75. | 7 | TOFFANIN, V, PENASA, M, MCPARLAND, S, et al. Genetic parameters for milk mineral content and acidity predicted by mid-infrared spectroscopy in Holstein-Friesian cows[J]. Animal, 2015, 9(5): 775-780. | 8 | SOYEURT H, DEHARENG F, GENGLER N, et al. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries[J]. Journal of Dairy Science, 2011, 94(4): 1657-1667. | 9 | 李巧玲, 刘峰, 宋思远, 等. 中红外光谱法快速测定牛奶中非蛋白氮类物质[J]. 食品工业科技, 2014, 35(22): 73-75, 80. | 9 | LI Q, LIU F, SONG S, et al. Fast determination of nonprotein nitrogen content in milk based on mid-infrared spectroscopy method[J]. Science and Technology of Food Industry, 2014, 35(22): 73-75, 80. | 10 | 吴珽, 梁龙, 朱华, 等. 海南制浆树种中主要成分的近红外分析与模型优化[J]. 光谱学与光谱分析, 2021, 41(5): 1404-1409. | 10 | WU T, LIANG L, ZHU H, et al. Near-infrared analysis and models optimization of main components in Pulpwood of Hainan province[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1404-1409. | 11 | 花晨芝, 赵凌, 宋建军, 等. 粒子群算法选择特征波长在紫外光谱检测COD中的研究[J]. 西华师范大学学报(自然科学版), 2019, 40(1): 81-85. | 11 | HUA C, ZHAO L, SONG J, et al. Selection of wavelength for UV-visible spectroscopy based on BLS combined with PSO[J]. Journal of China West Normal University (Natural Sciences), 2019, 40(1): 81-85. | 12 | 石吉勇, 邹小波, 王开亮, 等. 模拟退火算法用于食醋总酸含量近红外光谱模型的波数点优选[J]. 食品科学, 2011, 32(10): 120-123. | 12 | SHI J, ZOU X, WANG K, et al. Simulated annealing algorithm based wavenumber selection for total acid content analysis in vinegar by near infrared spectroscopy[J]. Food Science, 2011, 32(10): 120-123. | 13 | 刘冬阳, 孙晓荣, 刘翠玲, 等. 拉曼光谱结合模拟退火的小麦粉灰分含量检测[J]. 中国粮油学报, 2019, 34(5): 128-133. | 13 | LIU D, SUN X, LIU C, et al. Detection of ash control of wheat flour based on Raman spectroscopy combined with simulated annealing[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(5): 128-133. | 14 | 周孟然, 孙磊, 卞凯, 等. iPLS波段筛选方法在食用油品上快速检测研究[J]. 激光杂志, 2020, 41(7): 13-17. | 14 | ZHOU M, SUN L, BIAN K, et al. Band screening of iPLS for laser-induced fluorescence spectrum of edible oil[J]. Laser Journal, 2020, 41(7): 13-17. | 15 | 张烝彦, 叶沁, 刘晓颖, 等. 傅里叶变换衰减全反射红外光谱结合向前区间偏最小二乘法快速测定食用油中总极性化合物[J]. 浙江农业科学, 2019, 60(6): 1003-1007. | 15 | ZHANG Z, YE Q, LIU X, et al. Fourier transform attenuated total reflection infrared spectroscopy combined with forward interval partial least squares method for rapid determination of total polar compounds in edible oil[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(6): 1003-1007. | 16 | 王拓, 戴连奎, 马万武. 拉曼光谱结合后向间隔偏最小二乘法用于调和汽油辛烷值定量分析[J]. 分析化学, 2018, 46(4): 623-629. | 16 | WANG T, DAI L, MA W. Quantitative analysis of blended gasoline octane number using Raman spectroscopy with backward interval partial least squares method[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 623-629. | 17 | 史智佳, 李鹏飞, 吕玉, 等. 移动窗口偏最小二乘法优选猪油丙二醛近红外光谱波段[J]. 中国食品学报, 2014, 14(11): 207-213. | 17 | SHI Z, LI P, LYU Y, et al. Region optimization in FT-NIR spectroscopy for determination of MDA in lard with moving window partial least squares[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(11): 207-213. | 18 | 许良, 闫亮亮, 塞击拉呼, 等. 近红外光谱结合可移动窗口偏最小二乘法对克霉唑粉末药品的定量分析[J]. 计算机与应用化学, 2016, 33(4): 415-418. | 18 | XU L, YAN L, SAIJLAHU, et al. Quantitative analysis of Clotrimazole powder drugs by using moving window partial least square method combined with near-infrared spectroscopy[J]. Computers and Applied Chemistry, 2016, 33(4): 415-418. | 19 | 李庆旭, 王巧华, 马美湖, 等. 基于可见/近红外光谱和深度学习的早期鸭胚雌雄信息无损检测[J]. 光谱学与光谱分析, 2021, 41(6): 1800-1805. | 19 | LI Q, WANG Q, MA M, et al. Non-destructive detection of male and female information of early duck embryos based on visible/near infrared spectroscopy and deep learning[J]. Spectroscopy and Spectral Analysis, 2021, 41(6): 1800-1805. | 20 | 付丹丹, 王巧华, 高升, 等. 不同品种鸡蛋贮期S-卵白蛋白含量分析及其可见/近红外光谱无损检测模型研究[J]. 分析化学, 2020, 48(2): 289-297. | 20 | FU D, WANG Q, GAO S, et al. Analysis of S-Ovalbumin content of different varieties of eggs during storage and its nondestructive testing model by visible-near infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2020, 48(2): 289-297. | 21 | 韩毅, 蔡建湖, 周根贵, 等. 随机蛙跳算法的研究进展[J]. 计算机科学, 2010, 37(7): 16-19. | 21 | HAN Y, CAI J, ZHOU G, et al. Advances in shuffled frog leaping algorithm[J]. Computer Science, 2010, 37(7): 16-19. | 22 | 孙晶京, 杨武德, 冯美臣, 等. 基于随机蛙跳和支持向量机的冬小麦叶面积指数估算[J]. 山西农业大学学报(自然科学版), 2020, 40(5): 120-128. | 22 | SUN J, YANG W, FENG M, et al. Estimation of winter wheat leaf area index based on random leapfrog and support vector regression approach[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2020, 40(5): 120-128. | 23 | 王巧华, 梅璐, 马美湖, 等.利用机器视觉与近红外光谱技术的皮蛋无损检测与分级[J]. 农业工程学报, 2019, 35(24): 314-321.. | 23 | WANG Q, MEI L, MA M, et al.Nondestructive testing and grading of preserved duck eggs based on machine vision and near-infrared spectroscopy[J]. Transactions of the CSAE, 2020, 40(5): 120-128. | 24 | 黄平捷, 李宇涵, 俞巧君, 等. 基于SPA和多分类SVM的紫外-可见光光谱饮用水有机污染物判别方法研究[J]. 光谱学与光谱分析, 2020, 40(7): 2267-2272. | 24 | HUANG P, LI Y, YU Q, et al. Classify of organic contaminants in water distribution systems developed by SPA and multi-classification SVM using UV-VIS spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 2267-2272. | 25 | Vapnik V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(10): 988-999. | 26 | Burges C J C. A Tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery. 1998, 2(2): 121-167. | 27 | BONFATTI V, MARTINO G D, CARNIER P. Effectiveness of mid-infrared spectroscopy for the prediction of detailed protein composition and contents of protein genetic variants of individual milk of Simmental cows[J]. Journal of Dairy Science, 2010, 94(12): 5776-5785. | 28 | 代芬, 邱泽源, 邱倩, 等. 基于拉曼光谱和自荧光光谱的柑橘黄龙病快速检测方法[J]. 智慧农业, 2019, 1(3): 77-86. | 28 | DAI F, QIU Z, QIU Q, et al. Rapid detection of citrus Huanglongbing using Raman spectroscopy and auto-fluorescence spectroscopy[J]. Smart Agriculture, 2019, 1(3): 77-86. | 29 | 胡翼然, 李杰庆, 刘鸿高, 等. 基于支持向量机对云南常见野生食用牛肝菌中红外光谱的种类鉴别[J]. 食品科学, 2021, 42(8): 248-256. | 29 | HU Y, LI J, LIU H, et al. Species identification of common wild edible bolete in Yunnan by Fourier transform mid-infrared spectroscopy coupled with support vector machine[J]. Food Science, 2021, 42(8): 248-256. |
|