1 | Araus J L, Cairns J E. Field high-throughput phenotyping: the new crop breeding frontier[J]. Trends Plant Sci, 2014, 19(1): 52-61. | 2 | Crain J, Mondal S, Rutkoski J, et al. Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding[J]. Plant Genome, 2018, 11: no.1. | 3 | Tester M, Langridge P. Breeding technologies to increase crop production in a changing world[J]. Science, 2010, 327(5967): 818-822. | 4 | Chen D, Neumann K, Friedel S, et al. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis[J]. Plant Cell Online, 2014, 26(12): 4636-4655. | 5 | Yang W, Guo Z, Huang C, et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice[J]. Nat Commun, 2014, 5: no.5087. | 6 | Houle D, Govindaraju D R, Omholt S. Phenomics: the next challenge[J]. Nat Rev Genet, 2010, 11(12): 855-866. | 7 | White J W, Andrade-Sanchez P, Gore M A, et al. Field-based phenomics for plant genetics research[J]. F Crop Res, 2010, 133: 101-112. | 8 | Junker A, Muraya M M, Weigelt-Fischer K, et al. Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems[J]. Front Plant Sci, 2015, 5: no.770. | 9 | Nguyen G N, Kant S. Improving nitrogen use efficiency in plants: Effective phenotyping in conjunction with agronomic and genetic approaches[J]. Funct Plant Biol, 2018, 45(6): 606-619. | 10 | Cendrero-Mateo M P, Muller O, Albrecht H, et al. Field phenotyping: Concepts and examples to quantify dynamic plant traits across scales in the field[J]. Terrestrial Ecosystem Research Infrastructures: Challenges and Opportunities, Boca Raton: CRC Press,2017: 53-80. | 11 | Zhao C, Zhang Y, Du J. Crop phenomics: Current status and perspectives[J]. Front Plant Sci, 2019, 10: no.714. | 12 | Furbank R T, Tester M, Berry S, et al. Phenomics–technologies to relieve the phenotyping bottleneck[J]. Trends Plant Sci, 2011, 16(12): 635-644. | 13 | Tardieu F, Cabrera-Bosquet L, Pridmore T, et al. Plant phenomics, from sensors to knowledge[J]. Curr Biol, 2017, 27(15): 770-783. | 14 | Puijalon S, Bouma T J, Douady C J, et al. Plant resistance to mechanical stress?: Evidence of an avoidance-tolerance trade-off[J], New Phytologist, 2011, 191(4): 1141-1149. | 15 | Yang W, Feng H, Zhang X, et al. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives[J]. Mol Plant, 2020, 13: 187-214. | 16 | Kirchgessner N, Liebisch F, Yu K, et al. The ETH field phenotyping platform FIP: A cable-suspended multi-sensor system[J]. Funct Plant Biol, 2017, 44(1): 154-168. | 17 | Roy J, Tardieu F, Tixier-Boichard M, et al. European infrastructures for sustainable agriculture[J]. Nat Plants, 2017, 3: 756-758 | 18 | Pieruschka R, Schurr U. Plant phenotyping: Past, present, and future[J]. Plant Phenomics, 2019: no. 7507131. | 19 | Rosenqvist E, Gro?kinsky D K, Ottosen C O, et al. The phenotyping dilemma-the challenges of a diversified phenotyping community[J]. Front Plant Sci, 2019, 10: no.163. | 20 | Cobb J N, DeClerck G, Greenberg A, et al. Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement[J]. Theor Appl Genet, 2013, 126(4): 867-887. | 21 | Tardieu F, Simonneau T, Muller B. The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach[J]. Annu Rev Plant Biol, 2018, 69(1), 733-759. | 22 | 周济, Tardieu F, Pridmore T P, 等. 植物表型组学:发展、现状与挑战[J]. 南京农业大学学报, 2018, 41(4): 580-588. | 22 | Zhou J, Tardieu F, Pridmore T P, et al. Plant phenomics: History, present status and challenges[J]. J Nanjing Agric Univ, 2018, 41(4): 580-588. | 23 | Reynolds D, Baret F, Welcker C, et al. What is cost-efficient phenotyping? Optimizing costs for different scenarios[J]. Plant Sci, 2019, 282: 14-22. | 24 | 高宇, 高军萍, 李寒, 等. 植物表型监测技术研究进展及发展对策[J]. 江苏农业科学, 2017, 45(11): 5-10. | 24 | Gao Y, Gao J, Li H, et al. Research progress and development countermeasure of plant phenotypic monitoring technology[J]. Jiangsu Agricultural Sciences, 2017, 45(11): 5-10. | 25 | 郭庆华, 杨维才, 吴芳芳, 等. 高通量作物表型监测:育种和精准农业发展的加速器[J]. 中国科学院院刊, 2018, 33(9): 940-946. | 25 | Guo Q, Yang W, Wu F, et al. High-throughput crop phenotyping: Accelerators for development of breeding and precision agriculture[J]. Bulletin of Chinese Academy of Science, 2018, 33(9): 940-946. | 26 | 程超华, 唐蜻, 邓灿辉, 等. 表型组学及多组学联合分析在植物种质资源精准鉴定中的应用[J/OL]. 分子植物育种. | 26 | Cheng C, Tang Q, Deng C, et al. Application of phenomics and multiomics joint analysis in accurate identification of plant germplasm resources[J/OL]. Molecular Plant Breeding.. | 27 | 刘立才, 梁丽秀, 杜传红. 植物表型组学在现代农业中的应用[J]. 科技创新与应用, 2019, (22): 169-174. | 28 | 杨贵军, 李长春, 于海洋, 等. 农用无人机多传感器遥感辅助小麦育种信息获取[J]. 农业工程学报, 2015, 31(21): 184-190. | 28 | Yang G, Liang L, Yu H, et al. UAV based multi-load remote sensing technologies for wheat breeding information acquirement[J]. Transaction of the CSAE, 31(21): 184-190. | 29 | 刘建刚, 赵春江, 杨贵军, 等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016, 32(24): 98-106. | 29 | Liu J, Zhao C, Yang G, et al. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J]. Transaction of the CSAE, 2016, 32(24): 98-106. | 30 | 高林, 杨贵军, 李红军, 等. 基于无人机数码影像的冬小麦叶面积指数探测研究[J]. 中国生态农业学报2016, 24(9): 1254-1264. | 30 | Gao L, Yang G, Li H, et al. Winter wheat LAI estimation using unmanned aerial vehicle RGB-imaging[J]. Chinese Agricultural Science Bulletin, 2016, 24(9): 1254-1264. | 31 | 温维亮, 郭新宇, 赵春江, 等. 基于三维数字化的玉米株型参数提取方法研究[J]. 中国农业科学, 2018, 51(6): 1034-1044. | 31 | Wen W, Guo X, Zhao C, et al. Research on maize plant type parameter extraction by using three dimensional digitizing data[J]. Scientia Agricultura Sinica, 2018, 51(6): 1034-1044. | 32 | 曹卫星, 朱艳, 田永超, 等. 作物精确栽培技术的构建与实现[J]. 中国农业科学, 2011, 44(19): 3955-3969. | 32 | Cao W, Zhu Y, Tian Y, et al. Development and Implementation of Crop precision cultivation technology[J]. Scientia Agricultura Sinica, 2011, 44(19): 3955-3969. | 33 | 马孟莉, 朱艳, 李文龙, 等. 基于分层多端元混合像元分解的水稻面积信息提取[J]. 农业工程学报, 2012, 28(2): 154-159. | 33 | Ma M, Zhu Y, Li W, et al. Extracting area information of paddy rice based on stratified multiple endmember spectral mixture analysis[J]. Transactions of the CSAE, 2012, 28(2): 154-159. | 34 | 郭小清, 胥晓明, 曹卫星, 等. 作物模型系统 Web 服务集成方法[J]. 农业工程学报, 2013, 29(22): 162-170. | 34 | Guo X, Xu X, Cao W, et al. Web service integration method of crop model system[J]. Transactions of the CSAE, 2013, 29(22): 162-170. | 35 | 胡伟娟, 凌宏清, 傅向东. 植物表型组学研究平台建设及技术应用[J]. 遗传, 2019, 41(11): 1060-1066. | 35 | Hu W, Ling H, Fu X. Development and application of the plant phenomics analysis platform[J]. Hereditas(Beijing), 2019, 41(11): 1060-1066. | 36 | 赵春江. 植物表型组学大数据及其研究进展[J]. 农业大数据学报, 2019, 1(2): 5-14. | 36 | Zhao C. Big data of plant phenomics and its research progress[J]. Journal of Agricultural Big Data, 2019, 1(2): 5-14. | 37 | 唐惠燕, 倪峰, 李小涛, 等. 基于Scopus的植物表型组学研究进展分析[J]. 南京农业大学学报, 2018, 41(6): 1133-1141. | 37 | Tang H, Ni F, Li X. Analysis of the advance in plant phenomics research based on Scopus tools[J]. Journal of Nanjing Agricultural University, 2018, 41(6): 1133-1141. | 38 | 李晓曼, 张扬, 徐倩. 基于文献计量的植物表型组学研究进展分析[J]. 农业大数据学报, 2019, 1(2): 64-75 | 38 | Li X, Zhang Y, Xu Q, et al. Bibliometrics-based analysis of advances in plant phenomics research[J]. Journal of Agricultural Big Data, 2019, 1(2): 64-75. | 39 | 段凌凤, 杨万能. 水稻表型组学研究概况和展望[J]. 生命科学, 2016 28(10): 1129-1137. | 39 | Duan L, Yang W. Research advances and future scenarios of rice phenomics[J]. Chinese Bulletin of Life Sciences, 2016, 28(10): 1129-1137. | 40 | 胡伟娟, 傅向东, 陈凡, 等. 新一代植物表型组学的发展之路[J]. 植物学报, 2019, 54(5): 558-568. | 40 | Hu W, Fu X, Chen F, et al. A path to next generation of plant phenomics[J]. Bulletin of Botany, 2019, 54(5): 558-568. | 41 | 潘映红. 论植物表型组和植物表型组学的概念与范畴[J]. 作物学报, 2015, 41(2): 175-186. | 41 | Pan Y. Analysis of concepts and categories of plant phenome and phenomics[J]. Acta Agronomica Sinica, 41(2): 175-186. | 42 | Fiorani F, Schurr U. Future scenarios for plant phenotyping[J]. Annu Rev Plant Biol, 2013, 64(1): 267-291. | 43 | Gibbs J A, Pound M, French A P, et al. Approaches to three-dimensional reconstruction of plant shoot topology and geometry[J]. Funct Plant Biol, 2017, 44: 62-75. | 44 | Beck M, Zhou J, Faulkner C, et al. Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting[J]. Plant Cell, 2012, 24(10): 4205-4219. | 45 | Zhou J, Spallek T, Faulkner C, et al. CalloseMeasurer: A novel software solution to measure callose deposition and recognise spreading callose patterns[J]. Plant Methods, 2013, 8: no. 49. | 46 | Faulkner C, Zhou J, Evrard A, et al. An automated quantitative image analysis tool for the identification of microtubule patterns in plants[J]. Traffic, 2017, 18(10): 683-693. | 47 | Singh V, Misra A K. Detection of plant leaf diseases using image segmentation and soft computing techniques[J]. Inf Process Agric, 2017, 4(1): 41-49. | 48 | Zhou J, Reynolds D, Websdale D, et al. CropQuant: An automated and scalable field phenotyping platform for crop monitoring and trait measurements to facilitate breeding and digital agriculture[J]. bioRxiv, 2017. . | 49 | Watson A, Ghosh S, Williams M J, et al. Speed breeding: A powerful tool to accelerate crop research and breeding[J]. Nat Plants, 2018, 4: 23-29. | 50 | Cao Z, Yao X, Liu H, et al. Comparison of the abilities of vegetation indices and photosynthetic parameters to detect heat stress in wheat[J]. Agric For Meteorol, 2019, 265: 121-136. | 51 | Santos T T, Koenigkan L V, Barbedo J G A, et al. 3d plant modeling: Localization, mapping and segmentation for plant phenotyping using a single hand-held camera[C]// Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics), 2015, 8928: 247-263. | 52 | Chen D, Shi R, Pape J M, et al. Predicting plant biomass accumulation from image-derived parameters[J]. Gigascience, 2018, 7(2): 1-13. | 53 | Zhou J, Applegate C, Alonso A D, et al. Leaf-GP: An open and automated software application for measuring growth phenotypes for arabidopsis and wheat[J]. Plant Methods, 2017, 13(1): 1-30. | 54 | Guo Q, Wu F, Pang S, et al. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping[J]. Sci China Life Sci, 2018, 61(3): 328-339. | 55 | Arvidsson S, Pérez-Rodríguez P, Mueller-Roeber B. A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects[J]. New Phytol, 2011, 191(3): 895-907. | 56 | Sadras V O, Slafer G A. Environmental modulation of yield components in cereals: Heritabilities reveal a hierarchy of phenotypic plasticities[J]. F Crop Res, 2012, 127: 215-224. | 57 | Zhu J, van der Werf W, Anten N P R, et al. The contribution of phenotypic plasticity to complementary light capture in plant mixtures[J]. New Phytol, 2015, 207(4): 1213-1222. | 58 | Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nat Genet, 2010, 42(11): 961-967. | 59 | Yang W, Guo Z, Huang C, et al. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer[J]. J Exp Bot, 2015, 66(18): 5605-5615. | 60 | Duan T, Chapman S C, Holland E, et al. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes[J]. J Exp Bot, 2016, 67: 4523-4534. | 61 | Scheres B, van der Putten W H. The plant perceptron connects environment to development[J]. Nature, 2017, 543(7645): 337-345. | 62 | Reuzeau C, Pen J, Frankard V, et al. TraitMill: A discovery engine for identifying yield-enhancement genes in cereals[J]. Plant Gene Trait, 2010, 3(1): 1-6. | 63 | Palosuo T, Kersebaum K C, Angulo C, et al. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models[J]. Eur J Agron, 2010, 35(3): 103-114. | 64 | Bulman P, Hunt L A. Relationships among tillering, spike number and grain yield in winter wheat (Triticum aestivum L.) in Ontario[J]. Can J Plant Sci, 1988, 68(3): 583-596. | 65 | Wu X, Chang X, Jing R. Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments[J]. PLoS One, 2012, 7(2): no.e31249. | 66 | Topp C N, Iyer-Pascuzzi A S, Anderson J T, et al. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture[J]. Proc Natl Acad Sci U S A, 2013, 110(18): 1695-1704. | 67 | Xie Q, Fernando K M C C, Mayes S, et al. Identifying seedling root architectural traits associated with yield and yield components in wheat[J]. Ann Bot, 2017, 119(7): 1115-1129. | 68 | Wu J, Wu Q, Pagès L, et al. RhizoChamber-Monitor: A robotic platform and software enabling characterization of root growth[J]. Plant Methods, 2018, 14(1): 1-15. | 69 | Zhang C, Si Y, Lamkey J, et al. High-throughput phenotyping of seed/seedling evaluation using digital image analysis[J]. Agronomy, 2018, 8(5): 1-14. | 70 | Alkhudaydi T, Reynolds D, Griffiths S, et al. An exploration of deep-learning based phenotypic analysis to detect spike regions in field conditions for UK bread wheat[J]. Plant Phenomics, 2019, 1: 1-17. | 71 | Schmidt J, Claussen J, W?rlein N, et al. Drought and heat stress tolerance screening in wheat using computed tomography[J]. Plant Methods, 2020, 16: 1-12. | 72 | Campbell M T, Knecht A C, Berger B, et al. Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice[J]. Plant Physiol, 2015, 168(4): 1476-1489. | 73 | Cabrera-Bosquet L, Fournier C, Brichet N, et al. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform[J]. New Phytol, 2016, 212(1): 269-281. | 74 | Nguyen G N, Maharjan P, Maphosa L, et al. A robust automated image-based phenotyping method for rapid vegetative screening of wheat germplasm for nitrogen use efficiency[J]. Front Plant Sci, 2019, 10: 1-15. | 75 | Jahnke S, Roussel J, Hombach T, et al. Pheno seeder - A robot system for automated handling and phenotyping of individual seeds[J]. Plant Physiol, 2016, 172: 1358-1370. | 76 | Liang X, Wang K, Huang C, et al. A high-throughput maize kernel traits scorer based on line-scan imaging[J]. Meas J Int Meas Confed, 2016, 90: 453-460. | 77 | Shao M, Zhang Y, Du J, et al. Fast analysis of maize kernel plumpness characteristics through Micro-CT technology[C]// Int. Conf. Comput. Comput. Technol. Agric. , 2017: 31-39. | 78 | Rahman A, Cho B K. Assessment of seed quality using non-destructive measurement techniques: A review[J]. Seed Sci Res, 2016, 26: 285-305. | 79 | Caporaso N, Whitworth M B B, Fisk I D D. Near-Infrared spectroscopy and hyperspectral imaging for non-destructive quality assessment of cereal grains[J]. Appl Spectrosc Rev, 2018, 53: 667-687. | 80 | Nakamura S, Satoh H, Ohtsubo K N I. Development of formulae for estimating amylose content, amylopectin chain length distribution, and resistant starch content based on the iodine absorption curve of rice starch[J]. Biosci Biotechnol Biochem, 2015, 79(3): 443-455. | 81 | Herzig P, Backhaus A, Seiffert U, et al. Genetic dissection of grain elements predicted by hyperspectral imaging associated with yield-related traits in a wild barley NAM population[J]. Plant Sci, 2019, 285: 151-164. | 82 | Crowell S, Falcao A X, Shah A, et al. High-resolution inflorescence phenotyping using a novel image-analysis pipeline, PANorama[J]. Plant Physiol, 2014, 165(2): 479-495. | 83 | Shewry P R. Wheat[J]. J Exp Bot, 2019, 60: 1537-1553. | 84 | Sacco A, Di Matteo A, Lombardi N, et al. Quantitative trait loci pyramiding for fruit quality traits in tomato[J]. Mol Breed, 2013, 31(1): 217-222. | 85 | Folta K M, Carvalho S D. Photoreceptors and control of horticultural plant traits[J]. HortScience, 2015, 50: 1274-1280. | 86 | Zhu G, Wang S, Huang Z, et al. Rewiring of the fruit metabolome in tomato breeding[J]. Cell, 2018, 172(1/2): 249-261. | 87 | Fang C, Luo J. Metabolic GWAS-based dissection of genetic bases underlying the diversity of plant metabolism[J]. Plant J, 2019, 97(1): 91-100. | 88 | Candido V, Miccolis V, Rivelli A R. Yield traits and water and nitrogen use efficiencies of bell pepper grown in plastic-greenhouse[J]. Ital J Agron, 2009 4(3): 91-100. | 89 | Kibinza S, Bazin J, Bailly C, et al. Catalase is a key enzyme in seed recovery from ageing during priming[J]. Plant Sci, 2011, 181(3): 309-315. | 90 | FAO. The impact of disasters and crises on agriculture and Food Security [EB/OL]. [2020-3-10]. . | 91 | Touchette B W, Smith G A, Rhodes K L, et al. Tolerance and avoidance: Two contrasting physiological responses to salt stress in mature marsh halophytes Juncus roemerianus Scheele and Spartina alterniflora Loisel[J]. J Exp Mar Bio Ecol, 2009, 380(1/2): 106-112. | 92 | Rausher M D. Co-evolution and plant resistance to natural enemies[J]. Nature, 2011, 411(6839): 857-864. | 93 | Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis[J]. Plant Biol, 2005, 7(6): 581-591. | 94 | Treutter D. Significance of flavonoids in plant resistance: A review[J]. Environ Chem Lett, 2006, 4(3): 147-157. | 95 | 屈宝香. 从粮食生产周期变化看中国粮食安全[J]. 作物杂志, 2004, (1): 6-9. | 96 | 何斌, 武建军,吕爱锋. 农业干旱风险研究进展[J]. 地理科学进展, 2010, 29(5): 557-564. | 96 | He B, Wu J, Lv A. New advances in agricultural drought risk study[J]. Progress in Geography, 2010, 29(5): 557-564. | 97 | Guo Z, Yang W, Chang Y, et al. Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice[J]. Mol Plant, 2018, 11(6): 789-805. | 98 | Xiong L, Wang R, Mao G, et al. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid[J]. Plant Physiol, 2006, 142(3): 1065-1074. | 99 | Bao Y, Aggarwal P, Robbins N E, et al. Plant roots use a patterning mechanism to position lateral root branches toward available water[J]. Proc Natl Acad Sci U S A, 2014, 111(25): 9319-9324. | 100 | Shiono K, Hashizaki R, Nakanishi T, et al. Multi-imaging of cytokinin and abscisic acid on the roots of rice (Oryza sativa) using matrix-assisted laser desorption/ionization mass spectrometry[J]. J Agric Food Chem, 2017, 65(35): 7624-7628. | 101 | Pflugfelder D, Metzner R, Dusschoten D, et al. Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI)[J]. Plant Methods, 2017, 13(1): 1-9. | 102 | Atkinson J A, Pound M P, Bennett M J, et al. Uncovering the hidden half of plants using new advances in root phenotyping[J]. Curr Opin Biotechnol, 2019, 55: 1-8. | 103 | Karwa S, Bahuguna R N, Chaturvedi A K, et al. Phenotyping and characterization of heat stress tolerance at reproductive stage in rice (Oryza sativa L.)[J]. Acta Physiol Plant, 2020, 29: no.42. | 104 | Marko D, El-Shershaby A, Carriero F, et al. Identification and characterization of a thermotolerant TILLING allele of heat shock binding protein 1 in tomato. Genes (Basel)[J]. 2019, 10: no.516. | 105 | Humplík J F, Lazár D, Fürst T, et al Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.)[J]. Plant Methods, 2015, 11(1): 1-11. | 106 | Mishra K B, Mishra A, Kubásek J, et al. Low temperature induced modulation of photosynthetic induction in non-acclimated and cold-acclimated Arabidopsis thaliana: chlorophyll a fluorescence and gas-exchange measurements[J]. Photosynth Res, 2019, 139(1-3): 123-143. | 107 | Moura D S, Brito G G, Moraes í L, et al. Cold tolerance in rice plants: Phenotyping procedures for physiological breeding[J]. J Agric Sci, 2017, 10(1): 313-324. | 108 | Deinlein U, Stephan A B, Horie T, et al. Plant salt-tolerance mechanisms[J]. Trends Plant Sci, 2014, 19(6): 371-379. | 109 | Mehta P, Jajoo A, Mathur S, et al. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves[J]. Plant Physiol Biochem, 2010, 48(1): 16-20. | 110 | Asif M A, Schilling R K, Tilbrook J, et al. Mapping of novel salt tolerance QTL in an Excalibur × Kukri doubled haploid wheat population[J]. Theor Appl Genet, 2018, 131: 2179-2196. | 111 | Bochicchio R, Sofo A, Terzano R, et al. Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: A new screening technique for studying plant response to metals[J]. Plant Physiol Biochem, 2015, 91: 20-27 | 112 | Kopittke P M, Punshon T, Paterson D J, et al. Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants[J]. Plant Physiol, 2018, 178: 507-523. | 113 | Rodrigues E S, Gomes M H F, Duran N M, et al. Laboratory microprobe X-ray fluorescence in plant science: Emerging applications and case studies[J]. Front Plant Sci, 2018, 871: 1-15. | 114 | Kopittke P M, de Jonge M D, Wang P, et al. Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging[J]. New Phytol, 2014, 201: 1251-1262. | 115 | Draz I S, Abou-Elseoud M S, Kamara A E M, et al. Screening of wheat genotypes for leaf rust resistance along with grain yield[J]. Ann Agric Sci, 2015, 60(1): 29-39. | 116 | Oliva R, Ji C, Atienza-Grande G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nat Biotechnol, 2019, 37: 1344-1350. | 117 | Kuska M, Wahabzada M, Leucker M, et al. Hyperspectral phenotyping on the microscopic scale: Towards automated characterization of plant-pathogen interactions[J]. Plant Methods, 2015, 11(1): no. 28. | 118 | Omran E S E. Early sensing of peanut leaf spot using spectroscopy and thermal imaging[J]. Arch Agron Soil Sci, 2017, 63: 883-896. | 119 | Singh A K, Ganapathysubramanian B, Sarkar S, et al. Deep learning for plant stress phenotyping?: Trends and future perspectives machine learning in plant science[J]. Trends Plant Sci, 2018, 23(10): 883-898. | 120 | Rothwell C T, Singh D, van Ogtrop F, et al. Rapid phenotyping of adult plant resistance in barley (Hordeum vulgare) to leaf rust under controlled conditions[J]. Plant Breed, 2019, 138: 51-61. | 121 | Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444: 323-329. | 122 | Thoen M P M, Kloth K J, Wiegers G L, et al. Automated video tracking of thrips behavior to assess host-plant resistance in multiple parallel two-choice setups[J]. Plant Methods, 2016, 12: 1-12. | 123 | El-Maarouf-Bouteau H, Mazuy C, Corbineau F, et al. DNA alteration and programmed cell death during ageing of sunflower seed[J]. J Exp Bot, 2011, 62(14): 5003-5011. | 124 | Hu D, Ma G, Wang Q, et al. Spatial and temporal nature of reactive oxygen species production and programmed cell death in elm (Ulmus pumila L.) seeds during controlled deterioration[J]. Plant Cell Environ, 2012, 35(11): 2045-2059. | 125 | Beck M, Zhou J, Faulkner C, et al. High-throughput imaging of plant immune responses[J]. Plant-Pathogen Interactions, 2014, 27(11): 67-80. | 126 | Minina E A, Smertenko A P, Bozhkov P V, Metacaspase releases the brakes on autophagy[J]. Autophagy, 2014, 10(5): 926-927. | 127 | Bourdais G, McLachlan D H, Rickett L M, et al. The use of quantitative imaging to investigate regulators of membrane trafficking in Arabidopsis stomatal closure[J]. Traffic, 2019, 20: 168-180. | 128 | Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping[J]. Sensors (Switzerland), 2014, 14(11): 20078-20111. | 129 | Roitsch T, Cabrera-Bosquet L, Fournier A, et al. Review: New sensors and data-driven approaches-A path to next generation phenomics[J]. Plant Sci, 2019, 282: 2-10. | 130 | Czedik-Eysenberg A, Seitner S, Güldener U, et al. The ‘PhenoBox’, a flexible, automated, open-source plant phenotyping solution[J]. New Phytol, 2018, 219(2): 808-823. | 131 | de Vylder J, Vandenbussche F, Hu Y, et al. Rosette Tracker: An open source image analysis tool for automatic quantification of genotype effects[J]. Plant Physiol, 2012, 160(3): 1149-1159. | 132 | Omidbakhshfard M A, Fujikura U, Olas J J, et al. GROWTH-REGULATING FACTOR 9 negatively regulates arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia[J]. PLOS Genetics, 2018, 14(7): no.e1007484. | 133 | Babst B A, Gao F, Acosta-Gamboa L M, et al. Three NPF genes in Arabidopsis are necessary for normal nitrogen cycling under low nitrogen stress[J]. Plant Physiol Biochem, 2019, 143: 1-10. | 134 | Marchetti C F, Ugena L, Humplík J F, et al. A novel image-based screening method to study water-deficit response and recovery of barley populations using canopy dynamics phenotyping and simple metabolite profiling[J]. Front Plant Sci, 2019, 10(10): 1-20. | 135 | Paul K, Sorrentino M, Lucini L, et al. Understanding the biostimulant action of vegetal-derived protein hydrolysates by high-throughput plant phenotyping and metabolomics: A case study on tomato[J]. Front Plant Sci, 2019, 10: no. 47. | 136 | Dhondt S, van Haerenborgh D, van Cauwenbergh C, et al. Quantitative analysis of venation patterns of Arabidopsis leaves by supervised image analysis[J]. Plant J, 2012, 69(3): 553-563. | 137 | Tisné S, Serrand Y, Bach L, et al. Phenoscope: An automated large-scale phenotyping platform offering high spatial homogeneity[J]. Plant J, 2013, 74(3): 534-544. | 138 | Viaud G, Loudet O, Cournède P H. Leaf segmentation and tracking in Arabidopsis thaliana combined to an organ-scale plant model for genotypic differentiation[J]. Front Plant Sci, 2017, 7: no.2057. | 139 | Lien M R, Barker R J, Ye Z, et al. A low-cost and open-source platform for automated imaging[J]. Plant Methods, 2019, 15(1): 1-14. | 140 | González A, Sevillano X, Betegón-Putze I, et al. MyROOT 2.0: An automatic tool for high throughput and accurate primary root length measurement[J]. Comput Electron Agric, 2020, 168: no.105125. | 141 | Panjvani K, Dinh A V, Wahid K A. LiDARPheno -A low-cost LiDAR-based 3D scanning system for leaf morphological trait extraction[J]. Front Plant Sci, 2019, 10: no.147. | 142 | ?wiek-Kupczyńska H, Altmann T, Arend D, et al. Measures for interoperability of phenotypic data: minimum information requirements and formatting[J]. Plant Methods, 2016, 12(1): no. 44. | 143 | Neveu P, Tireau A, Hilgert N, et al. Methods dealing with multi-source and multi-scale information in plant phenomics?: The ontology-driven Phenotyping hybrid Information System[J]. New Phytol, 2019, 221(1): 588-601. | 144 | Reynolds D, Ball J, Bauer A, et al. CropSight: A scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management[J]. Gigascience, 2019, 8(3): 1-11. | 145 | Li Y, Kennedy G, Ngoran F, et al. An ontology-centric architecture for extensible scientific data management systems[J]. Futur Gener Comput Syst, 2013, 29(2): 641-653. | 146 | Minervini M, Giuffrida M V., Perata P, et al. Phenotiki: An open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants[J]. Plant J, 2017, 90(1): 204-216. | 147 | Yasrab R, Atkinson J A, Wells D M, et al. RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures[J]. Gigascience, 2019, 8(11): 1-16. | 148 | Collins T. ImageJ for microscopy[J]. Biotechniques, 2007, 43(Supp1): S25-S30. | 149 | Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: An open-source platform for biological-image analysis[J]. Nat Methods, 2012, 9(7): 676-682. | 150 | Howse J. OpenCV computer vision with Python[M]. Birmingham: Packt Publishing Ltd., 2013. | 151 | Zhou C, Liang D, Yang X, et al. Wheat ears counting in field conditions based on multi-feature optimization and TWSVM[J]. Front Plant Sci, 2018, 9: no.1024. | 152 | Kong J, Dimitrov M, Yang Y, et al. Accelerating MATLAB image processing toolbox functions on GPUs[C]// Workshop on General Purpose Processing on Graphics Processing Units. ACM, 2010. | 153 | van der Walt S, Sch?nberger J L, Nunez-Iglesias J, et al. Scikit-image: Image processing in Python[J]. PeerJ, 2014, 2: no.e453. | 154 | Kozai T. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory[J]. Proc Japan Acad Ser B Phys Biol Sci, 2013, 89: 447-461. |
|