1 | TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world[J]. Science, 2010, 327: 818-822. | 2 | DUNCAN W G, WILLIAMS W A, LOOMIS R S. Tassels and the productivity of maize[J]. Crop Science, 1967, 7: 7-9. | 3 | MEGHJI M R, DUDLEY J W, LAMBERT R J, et al. Inbreeding depression, inbred and hybrid grain yields, and other traits of maize genotypes representing three eras[J]. Crop Science, 1984, 24(3): 545-549. | 4 | BROWN P J, UPADYAYULA N, MAHONE G S, et al. Distinct genetic architectures for male and female inflorescence traits of maize[J]. PLoS Genet, 2011,7(11): ID e1002383. | 5 | ZHANG Y, ZHANG N. Imaging technologies for plant high-throughput phenotyping: A review[J]. Frontiers of Agricultural Science and Engineering, 2018, 5(4): 406-419. | 6 | FERNANDA D M, GEMMA M, CAROLINA R A, et al. Yielding to the image: How phenotyping reproductive growth can assist crop improvement and production[J]. Plant Science, 2018, 282: 73-82. | 7 | GAGE J L, MILLER N D, SPALDING E P, et al. TIPS: A system for automated image-based phenotyping of maize tassels[J]. Plant Methods, 2017, 13(1): 27-32. | 8 | YE M, CAO Z, YU Z. An image-based approach for automatic detecting tasseling stage of maize using spatio-temporal saliency[C]// SPIE Conference on Multispectral Image Processing and Pattern Recognition. Washington, USA: SPIE Digital library, 2013. | 9 | KURTULMU F, KAVDR S. Detecting corn tassels using computer vision and support vector machines[J]. Expert Systems with Applications, 2014, 41(16): 7390-7397. | 10 | LU H, CAO Z, XIAO Y, et al. Fine-grained maize tassel trait characterization with multi-view representations[J]. Computers and Electronics in Agriculture, 2015, 118: 143-158. | 11 | LU H, CAO Z, XIAO Y, et al. TasselNet: Counting maize tassels in the wild via local counts regression network[J]. Plant Methods, 2017, 13(1):1-17. | 12 | MAKANZA R, ZAMAN-ALLAH M, CAIRNS J E, et al. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging[J]. Plant Methods, 2018, 15(1): ID 49. | 13 | 王传宇, 郭新宇, 吴升, 等. 基于计算机视觉的玉米果穗三维重建方法[J]. 农业机械学报, 2014, 45(9): 274-279. | 13 | WANG C, GUO X, WU S, et al. Three dimensional reconstruction of maize ear based on computer vision[J]. Transactions of the CSAM, 2014, 45(9): 274-279. | 14 | 温维亮, 郭新宇, 杨涛, 等. 玉米果穗点云分割方法研究[J]. 系统仿真学报, 2017, 29(12): 3030-3034, 3041. | 14 | WEN W, GUO X, YANG T, et al. Point cloud segmentation method of maize ear[J]. Journal of System Simulation, 2017, 29(12): 3030-3034, 3041. | 15 | 温维亮, 王勇健, 许童羽, 等. 基于三维点云的玉米果穗几何建模[J]. 中国农业科技导报, 2016, 18(5): 88-93. | 15 | WEN W, WANG Y, XU T, et al. Geometric modeling of maize ear based on three-dimensional point cloud[J]. Journal of Agricultural Science and Technology, 2016, 18(5): 88-93. | 16 | YU Z, ZHOU H, LI C. An image based automatic recognition method for the flowering stage of maize[C]// International Symposium on Multispectral Image Processing and Pattern Recognition. Washington, USA: SPIE Digital library, 2019. | 17 | BRICHET N, FOURNIER C, TURC O, et al. A robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-throughput phenotyping platform[J]. Plant Methods, 2017, 13(1): ID 96. | 18 | JIA H, QU M H, WANG G, et al. Dough-stage maize (Zea mays L.) ear recognition based on multiscale hierarchical features and multifeature fusion[J]. Mathematical Problems in Engineering, 2020, 2020(2): ID 5582598. | 19 | PAULUS S, SCHUMANN H, KUHLMANN H, et al. High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants[J]. Biosystems Engineering, 2014, 121: 1-11. | 20 | PAULUS S, DUPUIS, J, RIEDEL, S, et al. Automated analysis of barley organs using 3D laser scanning: An approach for high throughput phenotyping[J]. Sensors, 2014, 14(7): 12670-12686. | 21 | CHéNé Y, ROUSSEAU D, LUCIDARME P, et al. On the use of depth camera for 3D phenotyping of entire plants[J]. Computers and Electronics in Agriculture, 2012, 82: 122-127. | 22 | BUSEMEYER L, MENTRUP D, M?LLER K, et al. BreedVision-A multi-sensor platform for non-destructive field-based phenotyping in plant breeding[J]. Sensors, 2013, 13(3): 2830-2847. | 23 | LIN Y. LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics?[J]. Computers and Electronics in Agriculture, 2015, 119: 61-73. | 24 | GARRIDO M, PARAFOROS D S, REISER D, et al. 3D maize plant reconstruction based on georeferenced overlapping lidar point clouds[J]. Remote Sensing, 2015, 7(12): 17077-17096. | 25 | 韩东, 杨贵军, 杨浩, 等. 基于立体视觉的玉米雄穗三维信息提取[J]. 农业工程学报, 2018, 34(11): 166-173. | 25 | HAN D, YANG G, YANG H, et al. Three dimensional information extraction from maize tassel based on stereoscopic vision[J]. Transactions of the CSAE, 2018, 34(11): 166-173. | 26 | MILLER F P, VANDOME A F, MCBREWSTER J. KD-TREE[M]. San Francisco, California, USA: Alpha Press, 2009. | 27 | RUSU R B, COUSINS S. 3D is here: Point cloud library (PCL)[C]// IEEE International Conference on Robotics & Automation. New Jersey, USA: IEEE Press, 2011. | 28 | GROTH D, HARTMANN S, KLIE S, et al. Principal components analysis[J]. Methods in Molecular Biology, 2013, 930: 527-547. | 29 | XIANG L, BAO Y, TANG L, et al. Automated morphological traits extraction for sorghum plants via 3D point cloud data analysis[J]. Computers and Electronics in Agriculture, 2019, 162: 951-961. | 30 | 仇瑞承, 张漫, 魏爽, 等. 基于 RGB-D相机的玉米茎粗测量方法[J]. 农业工程学报, 2017, 33(S1): 170-176. | 30 | QIU R, ZHANG M, WEI S, et al. Method for measurement of maize stem diameters based on RGB-D camera[J]. Transactions of the CSAE, 2017, 33(S1): 170-176. | 31 | JIN S, SU Y, WU F, et al. Stem-leaf segmentation and phenotypic trait extraction of individual maize using terrestrial LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1336-1346. | 32 | WU S, WEN W, WANG Y, et al. MVS-Pheno: A portable and low-cost phenotyping platform for maize shoots using multiview stereo 3D reconstruction[J]. Plant Phenomics. 2020, 2020(2): ID 1848437. |
|