1 | MARCELIS L F M, HEUVELINK E, GOUDRIAAN J. Modelling biomass production and yield of horticultural crops: A review[J]. Scientia Horticulturae, 1998, 74(1): 83-111. | 2 | 刘海龙, 诸叶平, 李世娟, 等. DSSAT作物系统模型的发展与应用[J]. 农业网络信息, 2011 (11): 5-12. | 2 | LIU H, ZHU Y, LI S, et al. Development and application of DSSAT cropping system model[J]. Agriculture Network Information, 2011, (11): 5-12. | 3 | BOUMAN B A M, KEULEN H V, LAAR H H V, et al. The 'School of de Wit' crop growth simulation models: A pedigree and historical overview[J]. Agricultural Systems, 1996, 52(2): 171-198. | 4 | 王天铎, 于强. 植物生理学中的数学模型[M]// 陈晓亚, 汤章城. 植物生理学与分子生物学(第三版). 北京: 高等教育出版社, 2007. | 4 | WANG T, YU Q. Mathematical models in plant physiology [M]// CHEN X, TANG Z. Plant physiolgoy and melocular biology (3rd). Beijing: Higher Education Press, 2007. | 5 | OSMOND C B, BJ?RKMAN O, ANDERSON D J. Physiological processes in plant ecology[M]. Berlin, Heidelberg: Springer, 1980. | 6 | 杨靖民, 杨靖一, 姜旭, 等. 作物模型研究进展[J]. 吉林农业大学学报, 2012, 34(5): 553-561. | 6 | YANG J, YANG J, JIANG X, et al. Progress of crop model research[J]. Journal of Jilin Agricultural University, 2012, 34(5): 553-561. | 7 | JONES C A, KINIRY J R. CERES-maize: A simulation model of maize growth and development[M]. College Station, USA: Texas A & M University Press, 1986. | 8 | HEUVELINK E. Dry matter partitioning in tomato: Validation of a dynamic simulation model[J]. Annals of Botany, 1996, 77(1): 71-80. | 9 | BRISSON N, MARY B, RIPOCHE D, et al. STICS [Simulateur multidisciplinaire pour les Cultures Standards]: A generic model for the simulation of crops and their water and nitrogen balances. 1. Theory and parameterization applied to wheat and corn[J]. Agronomie (France), 1998, 18(5-6): 311-346. | 10 | KEATING B A, CARBERRY P S, HAMMER G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3-4): 267-288. | 11 | 康孟珍. 植物功能结构模型研究的回顾与展望[J]. 系统仿真学报, 2012, 24(10): 5-14. | 11 | KANG M. Review and perspectives on research about functional-structural plant models[J]. Journal of System Simulation, 2012, 24(10): 5-14. | 12 | YAN H P, KANG M Z, DE REFFYE P, et al. A dynamic, architectural plant model simulating resource-dependent growth[J]. Annals of Botany, 2004, 93(5): 591-602. | 13 | MA Y, WEN M, GUO Y, et al. Parameter optimization and field validation of the functional-structural model GREENLAB for maize at different population densities[J]. Annals of Botany, 2008, 101(8): 1185-1194. | 14 | KANG M Z, EVERS J B, VOS J, et al. The derivation of sink functions of wheat organs using the GREENLAB model[J]. Annals of Botany, 2008, 101 (8): 1099-1108. | 15 | 王秀娟, 李冬, 林宝刚, 等. 油菜分枝拓扑结构随机模拟[J]. 中国科学: 生命科学, 2019, 49(1): 67-76. | 15 | WANG X, LI D, LIN B, et al. Stochastic simulation of branch morphological structure in oilseed rape[J]. Scientia Sinica Vitae, 2019, 49(1): 67-76. | 16 | WANG X, KANG M, FAN X, et al. What are the differences in yield formation among two cucumber (Cucumis sativus L.) cultivars and their F1 hybrid?[J]. Journal of Integrative Agriculture, 2020, 19(7): 1789-1801. | 17 | FAN X, KANG M, HEUVELINK E, et al. A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth[J]. Ecological Modelling, 2015, 312: 363-373. | 18 | KANG M, WANG F. From parallel plants to smart plants: Intelligent control and management for plant growth[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2): 161-166. | 19 | YANG W, FENG H, FENG X, et al. Crop phenomics and high-throughput phenotyping: Past decades,current challenges, and future perspectives[J]. Molecular Plant, 2020, 13(2): 187-214. | 20 | SOLER C M T, HOOGENBOOM G, SENTELHAS P C, et al. Impact of water stress on maize grown off‐Season in a subtropical environment[J]. Journal of Agronomy and Crop Science, 2007, 193: 247-261. | 21 | SOLER C M T, HOOGENBOOM G, SENTELHAS P C. Thermal time for phenological development of four maize hybrids grown off-season in a subtropical environment[J]. Journal of Agricultural Science, 2005, 143: 169-182. | 22 | SOLER C M T, SENTELHAS P C, HOOGENBOOM G. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment[J]. European Journal of Agronomy, 2007, 27(2-4): 165-177. | 23 | HEUVELINK E. Dry matter partitioning in a tomato plant-one common assimilate pool[J]. Journal of Experimental Botany, 1995, 46 (289): 1025-1033. | 24 | LEMAIRE S, MAUPAS F, COURNEDE PH, et al. Analysis of the density effects on the source-sink dynamics in sugar-beet growth[C]// The 2009 Plant Growth Modeling, Simulation, Visualization, and Applications (PMA '09. | 24 | Washington D.C., USA: IEEE Computer Society, 2009: 285-292. | 25 | FENG L, MAILHOL J C, REY H, et al. Comparing an empirical crop model with a functional structural plant model to account for individual variability[J]. European Journal of Agronomy, 2014, 53: 16-27. | 26 | BAEY C, DIDIER A, LEMAIRE S, et al. Parametrization of five classical plant growth models applied to sugar beet and comparison of their predictive capacity on root yield and total biomass[J]. Ecological Modelling, 2014, 290: 11-20. | 27 | DE REFFYE P, HU B, KANG M, et al. Two decades of research with the greenlab model in agronomy[J]. Annals of Botany, 2020, 3(127): 281-295. | 28 | LETORT V, MAHE P, COURNèDE P H, et al. Quantitative genetics and functional-structural plant growth models: Simulation of quantitative trait loci detection for model parameters and application to potential yield optimization[J]. Annals of Botany, 2008, 101(8): 1243-1254. | 29 | WANG H, KANG MZ, HUA J. Simulating plant plasticity under light environment: A source-sink approach[C]// 2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. Piscataway, New York, USA: IEEE, 2012. | 30 | ZHU X G, LYNCH J P, LEBAUER D S, et al. Plants in silico: Why, why now and what?—An integrative platform for plant systems biology research[J]. Plant Cell & Environment, 2016, 39(5): 1049-1057. | 31 | CHEW Y H, WENDEN B, FLIS A, et al. Multiscale digital arabidopsis predicts individual organ and whole-organism growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(39): E4127-E4136. | 32 | PENG B, GUAN K, TANG J, et al. Towards a multiscale crop modelling framework for climate change adaptation assessment[J]. Nature Plants, 2020, 6(4): 338-348. |
|