Smart Agriculture ›› 2022, Vol. 4 ›› Issue (2): 1-18.doi: 10.12133/j.smartag.SA202204005
• 专题——智慧畜牧关键技术与装备 • 下一篇
康熙1,2,3(), 刘刚1,2(), 初梦苑1,2, 李前1,2, 王彦超1,2
收稿日期:
2022-04-28
出版日期:
2022-06-30
基金资助:
作者简介:
康 熙(1992-),男,博士,研究方向为农业健康养殖智能信息技术。E-mail:B20183080643@cau.edu.cn
通信作者:
刘 刚(1966-),男,博士,教授,研究方向为电子信息技术在农业中的应用。E-mail:pac@cau.edu.cnKANG Xi1,2,3(), LIU Gang1,2(), CHU Mengyuan1,2, LI Qian1,2, WANG Yanchao1,2
Received:
2022-04-28
Online:
2022-06-30
corresponding author:
LIU Gang, E-mail:pac@cau.edu.cn
About author:
KANG Xi,E-mail:B20183080643@cau.edu.cn
Supported by:
摘要:
利用先进的信息技术推动智能养殖业发展已经成为奶牛养殖研究领域的重要目标和任务。计算机视觉技术具有非接触、免应激、低成本及高通量等优点,在畜牧生产中应用前景广阔。本文在阐述了计算机视觉技术在智能化养殖业发展中重要性的基础上,首先介绍了基于计算机视觉的奶牛生理参数监测进展,包括体尺、体温、体重的前沿监测设备、技术和模型参数。然后阐述了奶牛跛行及乳腺炎等疾病诊断的前沿技术发展过程和研究现状。目前,相关技术研究和应用推广存在检测准确性不高,受环境因素影响较大,非标准化养殖场结构制约检测系统普及,以及检测系统成本较高等问题和挑战。最后,本文结合中国养殖业发展现状,针对保证检测准确性、减少环境干扰等问题,就如何提高计算机视觉技术在智能化养殖业中的准确性和普适性提出了相关建议,旨在为中国奶牛养殖业的科学管理和现代化生产提供新方法和新思路。
中图分类号:
康熙, 刘刚, 初梦苑, 李前, 王彦超. 基于计算机视觉的奶牛生理参数监测与疾病诊断研究进展及挑战[J]. 智慧农业(中英文), 2022, 4(2): 1-18.
KANG Xi, LIU Gang, CHU Mengyuan, LI Qian, WANG Yanchao. Advances and Challenges in Physiological Parameters Monitoring and Diseases Diagnosing of Dairy Cows Based on Computer Vision[J]. Smart Agriculture, 2022, 4(2): 1-18.
表 1
基于计算机视觉技术的奶牛体尺测量相关研究
文献 | 年份 | 设备类型 | 技术 | 体尺 | 研究结果 | 样本量/个 |
---|---|---|---|---|---|---|
Stajnko等[ | 2008 | 热成像仪 | 数字图像处理 | 体高、臀高 | 标准差为0.10~0.433 cm | 12 |
Taşdemir等[ | 2011 | 可见光相机 | 数字图像处理 | 肩高、臀高、臀宽、体长 | 平均精度为97.215% | 115 |
郭浩等[ | 2014 | 深度相机 | 三维点云处理 | 胸宽、尻宽、前乳头长度等 | 相对误差小于10% | —— |
Marinello等[ | 2015 | 深度相机 | 三维点云处理 | 臀宽、体长、体高、胸围等 | 手工与算法测量的平均决定系数为0.929 | 20 |
Nir等[ | 2018 | 深度相机 | 数字图像处理 | 体高、臀高 | 手工与算法测量的平均决定系数为0.969 | 107 |
Pezzuolo等[ | 2018 | 深度相机 | 三维点云处理 | 臀宽、体长、体高、胸深等 | 相对误差小于6% | 20 |
Le Cozler等[ | 2019 | 3D扫描仪 | 三维点云处理 | 肩高、臀宽、体宽、坐骨 宽度等 | 手工与3D测量之间平均相关性 为0.75 | 30 |
李琦等[ | 2020 | 可见光相机 | 三维点云处理 | 体长、体高、体斜长 | 平均相对误差为6.24% | 15 |
初梦苑[ | 2020 | 深度相机 | 三维点云处理 | 胸围 | 平均相对误差为3.30% | 86 |
Kamchen等[ | 2021 | RGB-D相机 | 深度学习、数字图像处理 | 臀宽、臀长、臀高、肩高 | 平均相对误差为11.58% | 260 |
表 2
基于计算机视觉技术的奶牛体温检测相关研究
文献 | 年份 | 相机类型 | 技术 | 研究目标 | 研究结果 | 样本量/个 |
---|---|---|---|---|---|---|
Hoffmann等[ | 2013 | OPTRIS® PI 160热红外相机 | Kenward-Roger近似检验 | 奶牛身体各部位和外阴温度差异 | 奶牛眼睛与外阴温度差异最小 | 22 |
Salles等[ | 2016 | FLIR Fluke Ti20TM热像仪 | Pearson相关性分析 | 奶牛身体各部位和直肠温度相关性 | 奶牛前额与直肠温度相关性达到0.9 | 24 |
Peng等[ | 2019 | VarioCAM®热红外相机 | 单因素方差分析 | 不同温湿度环境下奶牛体表温度和直肠温度变化 | 体表温度比直肠温度对环境变化更敏感 | 488 |
何金成等[ | 2020 | FLIR E60便携式红外热像仪 | 相关性分析 | 环境温湿度对体表温度检测影响 | 环境温度影响较大;眼温与直肠温相关性最高 | 200 |
何东健等[ | 2021 | MAG62型热像仪 | 骨架树模型 | 奶牛眼温检测 | 平均绝对误差0.35 ℃、平均相对误差为0.38% | 40 |
Jaddoa等[ | 2021 | FLIR A310、 T420 热红外相机 | 机器学习与阈值处理 | 奶牛眼温检测 | 平均精度为0.72,敏感性0.98 | 35 |
表3
基于计算机视觉技术的奶牛体重测量相关研究
文献 | 年份 | 设备类型 | 技术 | 模型参数 | 准确率 | 样本量/个 |
---|---|---|---|---|---|---|
Tasdemir等[ | 2011 | 可见光相机 | 多元线性回归 | 体尺 | 平均相对误差为1.87% | 16 |
张立倩[ | 2013 | 可见光相机 | 模糊逼近算法 | 体尺 | 平均相对误差为2.00% | —— |
Song等[ | 2017 | Kinect v2 | 多元线性回归 | 体尺、年龄、胎次 | 平均相对误差为5.20% | 30 |
牛金玉[ | 2018 | Kinect v2 | 最小二乘法 | 体尺 | 相对均方根误差为2.87% | 45 |
Le Cozler等[ | 2019 | Morpho2D | 多元线性回归 | 体尺、体积、表面积 | 平均相对误差为2.72% | 64 |
初梦苑等[ | 2020 | Kinect v2 | 多元线性回归 | 体积、表面积 | 平均相对误差为2.04% | 86 |
表 4
基于计算机视觉技术的奶牛乳房炎检测相关研究
文献 | 年份 | 相机类型 | 技术 | 乳房炎检测指标 | 研究结果 | 样本量/个 |
---|---|---|---|---|---|---|
郭艳娇等[ | 2022 | Fotric-625c红外 热像仪 | 线刨法,温度拟合线 | 奶牛乳房温度拟合线 的斜率 | 奶牛左右患病乳房识别准确率 为75% | 189 |
王彦超等[ | 2021 | FLIR-A615 | 深度学习 | 眼睛乳房温差法 | 奶牛乳房炎分类准确率为77.3% | 22 |
张旭东等[ | 2019 | FLIR-A615 | 热红外图像处理 | 眼睛乳房温差法 | 对于乳房炎分类准确率为87.5% | 17 |
Zhang等[ | 2020 | FLIR-A615 | 深度学习 | 眼睛乳房温差法 | 奶牛乳房炎分类准确率为83.33% | 30 |
蔡一欣[ | 2017 | 5000USB 摄像头 | pH 测试纸图像处理 | —— | 平均相对误差为 3.67%,标准差 为1.88% | 25 |
表5
基于计算机视觉技术的奶牛跛行识别相关研究
文献 | 年份 | 相机类型 | 分类算法 | 跛行特征 | 研究结果 | 样本量/个 |
---|---|---|---|---|---|---|
Poursaberi等[ | 2010 | 可见光 | 阈值判别 | 弓背 | 灵敏度为100%,特异性为97.60%,准确率为94.70% | 184 |
宋怀波等[ | 2018 | 可见光 | KNN ① | 头颈部轮廓 | 准确率为93.00% | 30 |
Kang等[ | 2020 | 可见光 | 阈值判别 | 对称性 | 准确率为96.00% | 100 |
Jiang等[ | 2022 | 可见光 | BiLSTM ② | 弓背 | 准确率为96.61% | 90 |
Kang等[ | 2022 | 可见光 | DenseNet | 对称性、跟随性 | 灵敏度为98.50%,特异性为99.25%,准确率为98.50% | 456 |
Viazzi等[ | 2014 | 深度 | 决策树 | 弓背 | 灵敏度为82.00%,特异性为91.00%,准确率为90.00% | 273 |
Jabbar等[ | 2017 | 深度 | SVM ③ | 对称性 | 灵敏度为100.00%,特异性为75.00%,准确率 为95.70% | 22 |
Alsaaod和Büscher[ | 2012 | 热红外 | 阈值判别 | 牛蹄温度 | 灵敏度为80.00%,特异性为82.90% | 24 |
Alsaaod等[ | 2014 | 热红外 | 阈值判别 | 前后牛蹄温度差 | 灵敏度为89.10%,特异性为66.60% | 149 |
康熙等[ | 2021 | 热红外 | 阈值判别 | 弓背 | 准确率为90.00% | 160 |
1 | 王艳阳, 李彤, 刘佳丽, 等. 中国奶牛产业发展现状与对策[J]. 黑龙江畜牧兽医, 2017(24): 23-26. |
2 | 陈艳飞. 奶牛产业发展现状与未来[J]. 养殖与饲料, 2018(7): 105-106. |
3 | 农业农村部: "十四五"奶业竞争力提升行动方案[J]. 北方牧业, 2022(5):14-15. |
4 | 李胜利, 姚琨, 曹志军, 等. 2021年奶牛产业技术发展报告[J]. 中国畜牧杂志, 2022(3): 244-249. |
5 | 刘一明. 实施九大任务 提振奶业发展——"十四五"奶业竞争力如何提升有了行动方案[N]. 农民日报, 2022-03-03(6). |
6 | 刘继芳, 韩书庆, 齐秀丽. 中国信息化畜禽养殖技术应用现状与展望[J]. 中国乳业, 2021(12): 47-52. |
LIU J, HAN S, QI X. Application progress and prospects of the livestock and poultry informatized breeding technology in China[J]. China Dairy, 2021(12): 47-52. | |
7 | 王国占, 侯方安, 车宇. 国内外无人化农业发展状况[J]. 农机科技推广, 2020(8): 8-9, 15. |
8 | 高学杰. 高产奶牛养殖技术要点与疾病防控[J]. 畜禽业, 2022, 33(3): 128-130. |
9 | 滕光辉. 畜禽设施精细养殖中信息感知与环境调控综述[J]. 智慧农业, 2019,1(3): 1-12. |
TENG G. Information sensing and environment control of precision facility livestock and poultry farming[J]. Smart Agriculture, 2019, 1(3): 1-12. | |
10 | 赵春江.智慧农业发展现状及战略目标研究[J].智慧农业, 2019, 1(1): 1-7. |
ZHAO C. State-of-the-art and recommended developmental strategic objectives of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7. | |
11 | 韩书庆, 张晶, 程国栋, 等. 奶牛跛行自动识别技术研究现状与挑战[J]. 智慧农业(中英文), 2020, 2(3): 21-36. |
HAN S, ZHANG J, CHENG G, et al. Current state and challenges of automatic lameness detection in dairy cattle[J]. Smart Agriculture, 2020, 2(3): 21-36. | |
12 | 徐文娇, 董彦君, 董玉兰, 等. 不同年龄段奶牛临床参数和血常规生理指标调查分析[J]. 中国兽医杂志, 2017, 53(10): 28-30. |
XU W, DONG Y, DONG Y, et al. Different age paragraph the cow clinical parameters and routine blood physiological index analysis[J]. Chinese Journal of Veterinary Medicine, 2017, 53(10): 28-30. | |
13 | 吴宇峰, 李一鸣, 赵远洋, 等. 基于计算机视觉的奶牛体况评分研究综述[J]. 农业机械学报, 2021, 52(S1): 268-275. |
WU Y, LI Y, ZHAO Y, et al. Review of research on body condition score for dairy cows based on computer vision[J]. Transactions of the CSAM, 2021, 52(S1): 268-275. | |
14 | 张小栓, 张梦杰, 王磊, 等. 畜牧养殖穿戴式信息监测技术研究现状与发展分析[J]. 农业机械学报, 2019, 50(11): 1-14. |
ZHANG X, ZHANG M, WANG L, et al. Research status and development analysis of wearable information monitoring technology in animal husbandry[J]. Transactions of the CSAM, 2019, 50(11): 1-14. | |
15 | 李胜利, 姚琨, 曹志军, 等. 2021年奶牛产业技术发展报告[J]. 中国畜牧杂志, 2022, 58(3): 239-244. |
LI S, YAO K, CAO Z, et al. Technical development report of the dairy industry in 2021[J]. Chinese Journal of Animal Science, 2022, 58(3): 239-244. | |
16 | STAJNKO D, BRUS M, HOČEVAR M. Estimation of bull live weight through thermographically measured body dimensions[J]. Computers and Electronics in Agriculture, 2008, 61(2): 233-240. |
17 | TAŞDEMIR Ş, ÜRKMEZ A, İNAL Ş. A fuzzy rule-based system for predicting the live weight of Holstein cows whose body dimensions were determined by image analysis[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2011, 19(4): 689-703. |
18 | 郭浩, 张胜利, 马钦, 等. 基于点云采集设备的奶牛体尺指标测量[J]. 农业工程学报, 2014, 30(5): 116-122. |
GUO H, ZHANG S, MA Q, et al. Cow body measurement based on Xtion[J]. Transactions of the CSAE, 2014, 30(5): 116-122. | |
19 | MARINELLO F, PEZZUOLO A, CILLIS D, et al. Application of Kinect-Sensor for three-dimensional body measurements of cows[C]// 7th European Conference on Precision Livestock Farming, ECPLF 2015. Milan, Italy: European Conference on Precision Livestock Farming, 2015: 661-669. |
20 | NIR O, PARMET Y, WERNER D, et al. 3D Computer-vision system for automatically estimating heifer height and body mass[J]. Biosystems Engineering, 2018, 173: 4-10. |
21 | PEZZUOLO A, GUARINO M, SARTORI L, et al. A feasibility study on the use of a structured light depth-camera for three-dimensional body measurements of dairy cows in free-stall barns[J]. Sensors, 2018, 18(3): ID 673. |
22 | LE COZLER Y, ALLAIN C, CAILLOT A, et al. High-precision scanning system for complete 3D cow body shape imaging and analysis of morphological traits[J]. Computers and Electronics in Agriculture, 2019, 157: 447-453. |
23 | 李琦, 刘伟, 赵建敏. 基于双目视觉及Mask RCNN的牛体尺无接触测量[J]. 黑龙江畜牧兽医, 2020(12): 46-50. |
LI Q, LIU W, ZHAO J. Non-contact measurement of bovine body size based on binocular vision and Mask RCNN[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(12): 46-50. | |
24 | 初梦苑. 基于三维重建的奶牛体尺检测与体重预估研究[D]. 保定: 河北农业大学, 2020. |
CHU M. Research on body measurement and weight estimation of cows based on 3D reconstruction[D]. Baoding: Hebei Agricultural University, 2020. | |
25 | KAMCHEN S G, SANTOS E FDOS, LOPES L B, et al. Application of depth sensor to estimate body mass and morphometric assessment in Nellore heifers[J]. Livestock Science, 2021, 245: ID 104442. |
26 | ZHANG J, ZHUANG Y, JI H, et al. Pig weight and body size estimation using a multiple output regression convolutional neural network: A fast and fully automatic method[J]. Sensors, 2021, 21(9): ID 3218. |
27 | GUO H, MA X, MA Q, et al. LSSA_CAU: An interactive 3D point clouds analysis software for body measurement of livestock with similar forms of cows or pigs[J]. Computers and Electronics in Agriculture, 2017, 138: 60-68. |
28 | FORBES A, DE OLIVEIRA M, DENNIS M R. Structured light[J]. Nature Photonics, 2021, 15(4): 253-262. |
29 | HEINRICHS A J, ROGERS G W, COOPER J B. Predicting body weight and wither height in Holstein heifers using body measurements[J]. Journal of Dairy Science, 1992, 75(12): 3576-3581. |
30 | LESOSKY M, DUMAS S, CONRADIE I, et al. A live weight-heart girth relationship for accurate dosing of east African shorthorn zebu cattle[J]. Tropical Animal Health and Production, 2012, 45(1): 311-316. |
31 | 刘忠超, 范伟强, 何东健. 奶牛体温检测研究进展[J]. 黑龙江畜牧兽医, 2018(19): 41-44. |
LIU Z, FAN W, HE D. Research progress of body temperature detection in dairy cows[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018(19): 41-44. | |
32 | 何东健, 宋子琪. 基于热红外成像与骨架树模型的奶牛眼温自动检测[J]. 农业机械学报, 2021, 52(3): 243-250. |
HE D, SONG Z. Automatic detection of dairy cow's eye temperature based on thermal infrared imaging technology and skeleton tree model[J]. Transactions of the CSAM, 2021, 52(3): 243-250. | |
33 | 张磊, 董茹月, 侯宇, 等.奶牛体温评价指标及测定方法研究进展[J]. 动物营养学报, 2020, 32(2): 548-557. |
ZHANG L, DONG R, HOU Y, et al. Research progress on evaluation indices and measurements of body temperature in dairy cows[J]. Chinese Journal of Animal Nutrition, 2020, 32(2): 548-557. | |
34 | CUTHBERTSON H, TARR G, GONZÁLEZ L A. Methodology for data processing and analysis techniques of infrared video thermography used to measure cattle temperature in real time[J]. Computers and Electronics in Agriculture, 2019, 167: ID 105019. |
35 | WILLARD S, DRAY S, FARRAR R, et al. Use of infrared thermal imaging to quantify dynamic changes in body temperature following lipopolysaccharide (LPS) administration in dairy cattle[J]. Journal of Animal Science, 2007, 85: ID26. |
36 | HOFFMANN G, SCHMIDT M, AMMON C, et al. Monitoring the body temperature of cows and calves using video recordings from an infrared thermography camera[J]. Veterinary Research Communications, 2013, 37(2): 91-99. |
37 | SALLES M S V, SILVA S CDA, SALLES F A, et al. Mapping the body surface temperature of cattle by infrared thermography[J]. Journal of Thermal Biology, 2016, 62: 63-69. |
38 | PENG D, CHEN S, LI G, et al. Infrared thermography measured body surface temperature and its relationship with rectal temperature in dairy cows under different temperature-humidity indexes[J]. International Journal of Biometeorology, 2019, 63(3): 327-336. |
39 | 何金成, 张鲜, 李素青, 等. 环境温湿度及测量部位对奶牛红外热成像温度的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 500-508. |
HE J, ZHANG X, LI S, et al. Effects of ambient temperature and relative humidity and measurement site on the cow's body temperature measured by infrared thermography[J]. Journal of Zhejiang University (Agric. & Life Sci.), 2020, 46(4): 500-508. | |
40 | JADDOA M A, GONZALEZ L, CUTHBERTSON H, et al. Multiview eye localisation to measure cattle body temperature based on automated thermal image processing and computer vision[J]. Infrared Physics & Technology, 2021, 119: ID 103932. |
41 | 张旭东, 康熙, 马丽, 等. 基于热红外图像的奶牛乳房炎自动检测方法[J]. 农业机械学报, 2019, 50(S1): 248-255, 282. |
ZHANG X, KANG X, MA L, et al. Automatic detection method of dairy cow mastitis based on thermal infrared image[J]. Transactions of the CSAM, 2019, 50(S1): 248-255, 282. | |
42 | ZHANG X, KANG X, FENG N, et al. Automatic recognition of dairy cow mastitis from erthmal images by a deep learning detector[J]. Computers and Electronics in Agriculture, 2020, 178: ID 105754. |
43 | 孙雨坤, 岳奎忠, 李文茜, 等. 图像信息技术在奶牛生产中的应用[J]. 动物营养学报, 2018, 30(5): 1626-1632. |
SUN Y, YUE K, LI W, et al. Application of image information technology in dairy cow production[J]. Chinese Journal of Animal Nutrition, 2018, 30(5): 1626-1632. | |
44 | KUZUHARA Y, KAWAMURA K, YOSHITOSHI R, et al. A preliminarily study for predicting body weight and milk properties in lactating Holstein cows using a three-dimensional camera system[J]. Computers and Electronics in Agriculture, 2015, 111: 186-193. |
45 | HANSEN M F, SMITH M L, SMITH L N, et al. Automated monitoring of dairy cow body condition, mobility and weight using a single 3D video capture device[J]. Computers in Industry, 2018, 98: 14-22. |
46 | TASDEMIR S, URKMEZ A, INAL S. Determination of body measurements on the Holstein cows using digital image analysis and estimation of live weight with regression analysis[J]. Computers and Electronics in Agriculture, 2011, 76(2): 189-197. |
47 | 张立倩. 基于模糊逼近计算视觉算法的奶牛体重测量[J]. 科技通报, 2013, 29(11): 149-152. |
ZHANG L. The cows weight calculation based on non-measurement machine vision[J]. Bulletin of Science and Technology, 2013, 29(11): 149-152. | |
48 | SONG X, BOKKERS E A M, VAN DER TOL P P J, et al. Automated body weight prediction of dairy cows using 3-dimensional vision[J]. Journal of Dairy Science, 2018, 101(5): 4448-4459. |
49 | 牛金玉. 基于三维点云的奶牛体尺测量与体重预测方法研究[D]. 杨凌: 西北农林科技大学, 2018. |
NIU J. Body size measurement and weight prediction for dairy cows based on 3D point cloud[D]. Yangling: Northwest A&F University, 2018. | |
50 | LE COZLER Y, ALLAIN C, XAVIER C, et al. Volume and surface area of Holstein dairy cows calculated from complete 3D shapes acquired using a high-precision scanning system: Interest for body weight estimation[J]. Computers and Electronics in Agriculture, 2019, 165: ID 104977. |
51 | 初梦苑, 刘刚, 司永胜, 等. 基于三维重建的奶牛体重预估方法[J]. 农业机械学报, 2020, 51(S1): 378-384. |
CHU M, LIU G, SI Y, et al. Predicting method of dairy cow weight based on three-dimensional reconstruction[J]. Transactions of the CSAM, 2020, 51(S1): 378-384. | |
52 | MEHMET K, BARDAKÇIOĞLU H E. Estimation of body weight and body condition score in dairy cows by digital image analysis method[J]. Veterinary Journal of Mehmet Akif Ersoy University, 2021, 6(3): 115-121. |
53 | 孙晓玉, 韩广文, 于孟虎,等. 荷斯坦牛体尺、体重性状遗传参数的估测及与产奶性能的相关分析[J]. 中国奶牛, 1999(3): 39-40. |
SUN X, HAN G, YU M, et al. Estimation of genetic parameters of body size and body weight in Holstein cattle and their correlation with milk production performance[J]. China Dairy Cattle, 1999(3): 39-40. | |
54 | XIANG Y, NAKAMURA S, TAMARI H, et al. 3D model generation of cattle by shape-from-silhouette method for ict agriculture[C]// 2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS). Piscataway, New York, USA: IEEE, 2016: 611-616. |
55 | XAVIER C, LE COZLER Y, DEPUILLE L, et al. The use of 3-dimensional imaging of Holstein cows to estimate body weight and monitor the composition of body weight change throughout lactation[J]. Journal of Dairy Science, 2022, 105(5): 4508-4519. |
56 | RUCHAY A, KOBER V, DOROFEEV K, et al. Comparative analysis of machine learning algorithms for predicting live weight of Hereford cows[J]. Computers and Electronics in Agriculture, 2022, 195: ID 106837. |
57 | 杭孝.早期预警在奶牛疾病中的应用分析[J].今日畜牧兽医, 2021, 37(9): 25-26. |
58 | 季凤娟. 奶牛常见疾病的防治措施[J].畜禽业, 2022, 33(1): 111-112. |
59 | HORTET P, SEEGERS H. Loss in milk yield and related composition changes resulting from clinical mastitis in dairy cows[J]. Preventive Veterinary Medicine, 1998, 37(1-4): 1-20. |
60 | 彭丹丹, 陈健, 赵越, 等. 脏污程度对奶牛乳区温度分布规律的研究[J]. 畜牧兽医学报, 2016, 47(4): 844-851. |
PENG D, CHEN J, ZHAO Y, et al. Effect of smudgy degree on temperature distribution of the udder surface in dairy cow[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(4): 844-851. | |
61 | VIGUIER C, ARORA S, GILMARTIN N, et al. Mastitis detection: Current trends and future perspectives[J]. Trends in Biotechnology, 2009, 27(8): 486-493. |
62 | MIR A Q, BANSAL B K, GUPTA D K. Subclinical mastitis in machine milked dairy farms in Punjab: Prevalence, distribution of bacteria and current antibiogram[J]. Veterinary World, 2014, 7(5): 291-294. |
63 | SCHUKKEN Y H, WILSON D J, WELCOME F, et al. Monitoring udder health and milk quality using somatic cell counts[J]. Veterinary Research, 2003, 34(5): 579-596. |
64 | MAURO Z, VERONICA R, FABIO L, et al. First evaluation of infrared thermography as a tool for the monitoring of udder health status in farms of dairy cows[J]. Sensors, 2018, 18(3): ID 862. |
65 | 蔡一欣, 马丽, 刘刚. 奶牛隐性乳房炎便携式计算机视觉快速检测系统设计与试验[J]. 农业工程学报, 2017, 33(S1): 63-69. |
CAI Y, MA L, LIU G. Design and experiment of rapid detection system of cow subclinical mastitis based on portable computer vision technology [J]. Transactions of the CSAE, 2017, 33(S1): 63-69. | |
66 | VOORT M, JENSEN D, KAMPHUIS C, et al. Invited review: Toward a common language in data-driven mastitis detection research[J]. Journal of Dairy Science, 2021, 104(10): 10449-10461. |
67 | LVENDAHL P, SRENSEN L P. Frequently recorded sensor data may correctly provide health status of cows if data are handled carefully and errors are filtered away [J]. Biotechnology, Agronomy, Society and Environment, 2016, 20(1): 3-12. |
68 | DENG Z, HOGEVEEN H, LAM T, et al. Performance of online somatic cell count estimation in automatic milking systems[J]. Frontiers in Veterinary Science, 2020, 7: ID 221. |
69 | JORGENSEN C H, KRISTENSEN A R, OSTERGAARD S, et al. Use of online measures of l-lactate dehydrogenase for classification of posttreatment mammary Staphylococcus aureus infection status in dairy cows[J]. Journal of Dairy Science, 2016, 99(10): 8375-8383. |
70 | DALEN G, RACHAH A, NORSTEBO H, et al. The detection of intramammary infections using online somatic cell counts[J]. Journal of Dairy Science, 2019, 102(6): 5419-5429. |
71 | HOGEVEEN H, KAMPHUIS C, STEENEVELD W, et al. Sensors and clinical mastitis: The quest for the perfect alert [J]. Sensors, 2010, 10(9): 7991-8009. |
72 | DOMINIAK K N, KRISTENSEN A R. Prioritizing alarms from sensor-based detection models in livestock production—A review on model performance and alarm reducing methods[J]. Computers and Electronics in Agriculture, 2017, 133: 46-67. |
73 | JONES B F, PLASSMANN P. Digital infrared thermal imaging of human skin [J]. IEEE Engineering in Medicine and Biology Magazine, 2002, 21(6): 41-48. |
74 | SATHIYABARATHI M, JEYAKUMAR S, MANIMARAN A, et al. Infrared thermography to monitor body and udder skin surface temperature differences in relation to subclinical and clinical mastitis condition in Karan fries (bos taurus×bos indicus) crossbred cows[J]. Indian Journal of Animal Sciences, 2018, 88(6): 694-699. |
75 | 杨春合, 顾宪红, 曹正辉, 等. 奶牛左右乳区温度温差作为隐性乳房炎检测指标的可行性研究[J]. 畜牧兽医学报, 2015, 46(9): 1663-1670. |
YANG C, GU X, CAO Z, et al. Study on possibility of left and right quarter skin temperature difference as a detecting indicator for subclinical mastitis in dairy cows[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46 (9): 1663-1670. | |
76 | 郭艳娇, 杨圣慧, 迟宇, 等. 基于热红外图像的奶牛乳区温度分布与乳房炎识别方法[J]. 农业工程学报, 2022, 38(2): 250-259. |
GUO Y, YANG S, CHI Y, et al. Recognizing mastitis using temperature distribution from thermal infrared images in cow udder regions[J]. Transactions of the CSAE, 2022, 38(2): 250-259. | |
77 | 王彦超, 康熙, 李孟飞, 等.基于改进YOLO v3-tiny的奶牛乳房炎自动检测方法[J]. 农业机械学报, 2021,52(S1): 276-283. |
WANG Y, KANG X, LI M, et al. Automatic detection method for dairy cow mastitis based on improved YOLOv3-tiny[J]. Transactions of the CSAM, 2021, 52(S1): 276-283. | |
78 | HOVINEN M, SIIVONEN J, TAPONEN S, et al. Detection of clinical mastitis with the help of a thermal camera[J]. Journal of Dairy Science, 2008, 91(12): 4592-4598. |
79 | WOLLOWSKI L, BERTULAT S, KOSSATZ A, et al. Short communication: Diagnosis and classification of clinical and subclinical mastitis utilizing a dynamometer and a handheld infrared thermometer[J]. Journal of Dairy Science, 2019, 102(7): 6532-6539. |
80 | 陈丽媛, 洪小华, 颜培实. 我国南方冬季和夏季肉牛体感温度研究[J]. 畜牧与兽医, 2015, 47(2): 40-44. |
CHEN L, HONG X, YAN P. Effective temperature equation of cows during winter and summer seasons in southern of China[J]. Animal Husbandry and Veterinary Medicine, 2015, 47(2), 40-44. | |
81 | FRANZE U, GEIDEL S, HEYDE U, et al. Investigation of infrared thermography for automatic health monitoring in dairy cows[J]. Züchtungskunde, 2012, 84(2): 158-170. |
82 | BERRY R J, KENNEDY A D, SCOTT S L, et al. Daily variation in the udder surface temperature of dairy cows measured by infrared thermography: Potential for mastitis detection[J]. Canadian Journal of Animal Science, 2003, 83(4): 687-693. |
83 | POURSABERI A, BAHR C, PLUK A, et al. Real-time automatic lameness detection based on back posture extraction in dairy cattle: Shape analysis of cow with image processing techniques [J]. Computers and Electronics in Agriculture, 2010, 74(1): 110-119. |
84 | TADICH N, FLOR E, GREEN L. Associations between hoof lesions and locomotion score in 1098 unsound dairy cows[J]. The Veterinary Journal, 2010, 184(1): 60-65. |
85 | SJÖSTRÖM K, FALL N, BLANCO-PENEDO I, et al. Lameness prevalence and risk factors in organic dairy herds in four European countries[J]. Livestock Science, 2018, 208: 44-50. |
86 | GRIMM K, HAIDN B, ERHARD M, et al. New insights into the association between lameness, behavior, and performance in Simmental cows[J]. Journal of Dairy Science, 2019, 102(3): 2453-2468. |
87 | AFONSO J S, BRUCE M, KEATING P, et al. Profiling detection and classification of lameness methods in British dairy cattle research: A systematic review and meta-analysis[J]. Frontiers in Veterinary Science, 2020, 7: 542-562. |
88 | SPRECHER D J, HOSTETLER D E, KANEENE J B. A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance[J]. Theriogenology 1997, 47: 1179-1187. |
89 | SCHLAGETER-TELLO A, BOKKERS E A M, KOERKAMP P W G G, et al. Relation between observed locomotion traits and locomotion score in dairy cows[J]. Journal of Dairy Science, 2015, 98(12): 8623-8633. |
90 | ALSAAOD M, FADUL M, STEINER A. Automatic lameness detection in cattle[J]. The Veterinary Journal, 2019, 246: 35-44. |
91 | PIETTE D, NORTON T, EXADAKTYLOS V, et al. Individualised automated lameness detection in dairy cows and the impact of historical window length on algorithm performance[J]. Animal, 2020, 14(2): 409-417. |
92 | POURSABERI A, BAHR C, PLUK A, et al. Real-time automatic lameness detection based on back posture extraction in dairy cattle: Shape analysis of cow with image processing techniques[J]. Computers and Electronics in Agriculture, 2010, 74(1): 110-119. |
93 | 宋怀波, 姜波, 吴倩, 等. 基于头颈部轮廓拟合直线斜率特征的奶牛跛行检测方法[J]. 农业工程学报, 2018, 34(15): 190-199. |
SONG H, JIANG B, WU Q, et al. Detection of dairy cow lameness based on fitting line slope feature of head and neck outline[J]. Transactions of the CSAE, 2018, 34(15): 190-199. | |
94 | KANG X, ZHANG X D, LIU G. Accurate detection of lameness in dairy cattle with computer vision: A new and individualized detection strategy based on the analysis of the supporting phase[J]. Journal of Dairy Science, 2020, 103(11): 10628-10638. |
95 | JIANG B, SONG H, WANG H, et al. Dairy cow lameness detection using a back curvature feature[J]. Computers and Electronics in Agriculture, 2022, 194: 106729-106731. |
96 | KANG X, LI S, LI Q, et al. Dimension-reduced spatiotemporal network for lameness detection in dairy cows[J]. Computers and Electronics in Agriculture, 2022, 197: 106922-106932. |
97 | VIAZZI S, BAHR C, HERTEM TVAN, et al. Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows[J]. Computers and Electronics in Agriculture, 2014, 100: 139-147. |
98 | JABBAR K A, HANSEN M F, SMITH M L, et al. Early and non-intrusive lameness detection in dairy cows using 3-dimensional video[J]. Biosystems Engineering, 2017, 153: 63-69. |
99 | ALSAAOD M, BÜSCHER W. Detection of hoof lesions using digital infrared thermography in dairy cows[J]. Journal of Dairy Science, 2012, 95(2): 735-742. |
100 | ALSAAOD M, SYRING C, DIETRICH J, et al. A field trial of infrared thermography as a non-invasive diagnostic tool for early detection of digital dermatitis in dairy cows[J]. The Veterinary Journal, 2014, 199(2): 281-285. |
101 | 康熙, 李树东, 张旭东, 等. 基于热红外视频的奶牛跛行运动特征提取与检测[J]. 农业工程学报, 2021, 37(23): 169-178. |
KANG X, LI S, ZHANG X, et al. Features extraction and detection of cow lameness movement based on thermal infrared videos[J]. Transactions of the CSAE, 2021, 37(23): 169-178. | |
102 | FLOWER F C, SANDERSON D J, WEARY D M. Hoof pathologies influence kinematic measures of dairy cow gait[J]. Journal of Dairy Science, 2005, 88(9): 3166-3173. |
103 | RUTTEN C J, VELTHUIS A G J, STEENEVELD W, et al. Invited review: Sensors to support health management on dairy farms[J]. Journal of Dairy Science, 2013, 96(4): 1928-1952. |
104 | JIANG B, WU Q, YIN X, et al. FLYOLOv3 deep learning for key parts of dairy cow body detection[J]. Computers and Electronics in Agriculture, 2019, 166: 104982-104990. |
105 | OKURA F, IKUMA S, MAKIHARA Y, et al. RGB-D video-based individual identification of dairy cows using gait and texture analyses[J]. Computers and Electronics in Agriculture, 2019, 165: 104944-104953. |
106 | BEGGS D S, JONGMAN E C, HEMSWORTH P H, et al. Lame cows on Australian dairy farms: A comparison of farmer-identified lameness and formal lameness scoring, and the position of lame cows within the milking order[J]. Journal of Dairy Science, 2019, 102(2): 1522-1529. |
107 | VIAZZI S, BAHR C, SCHLAGETER-TELLO A, et al. Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle[J]. Journal of Dairy Science, 2013, 96(1): 257-266. |
108 | WEIGELE H C, GYGAX L, STEINER A, et al. Moderate lameness leads to marked behavioral changes in dairy cows[J]. Journal of Dairy Science, 2018, 101(3): 2370-2382. |
109 | JONES B W. Behavioral gait change characterization and detection using precision dairy monitoring technologies[D]. Lexington: University of Kentucky, 2017. |
110 | NUFFEL AVAN, ZWERTVAEGHER I, WEYENBERG SVAN, et al. Lameness de-tection in dairy cows: Part 2. Use of sensors to automatically register changes in locomotion or behavior. Animals (Basel) 2015, 5, 861-885. |
111 | BERCKMANS D, BAHR C, LEROY T, et al. Automatic detection of lameness in dairy cattle—Analyzing image parameters related to lameness[C]// 8th International Livestock Environment Symposium, ILES VIII. St. Joseph, Michigan, USA: American Society of Agricultural and Biological Engineers, 2008: 949-956. |
112 | SONG X, LEROY T, VRANKEN E, et al. Automatic detection of lameness in dairy cattle—Vision-based trackway analysis in cow's locomotion[J]. Computers and Electronics in Agriculture, 2008, 64(1): 39-44. |
113 | PLUK A, BAHR C, POURSABERI A,et al. Automatic measurement of touch and release angles of the fetlock joint for lameness detection in dairy cattle using vision techniques[J]. Journal of Dairy Science, 2012, 95(4): 1738-1748. |
114 | RADOSTITS O M, GAY C C, HINCHCLIFF K W, et al. Veterinary medicine: A textbook of the diseases of cattle, horses, sheep, pigs and goats[M]. London: Saunders Ltd., 2007. |
115 | POURSABERI A, BAHR C, PLUK A, et al. Online lameness detection in dairy cattle using body movement pattern (BMP)[C]// The 11th International Conference on Intelligent Systems Design and Applications. Piscataway, New York, USA: IEEE, 2011: 732-736. |
116 | ZHAO K, BEWLEY J M, HE D, et al. Automatic lameness detection in dairy cattle based on leg swing analysis with an image processing technique[J]. Computers and Electronics in Agriculture, 2018, 148: 226-236. |
117 | JIANG B, SONG H, HE D. Lameness detection of dairy cows based on a double normal background statistical model[J]. Computers and Electronics in Agriculture, 2019, 158: 140-149. |
118 | 康熙, 张旭东, 刘刚, 等. 基于机器视觉的跛行奶牛牛蹄定位方法[J]. 农业机械学报, 2019, 50(S1): 276-282. |
KANG X, ZHANG X, LIU G, et al. Hoof location method of lame dairy cows based on machine vision[J]. Transactions of the CSAM, 2019(S1): 276-282. | |
119 | SCHLAGETER-TELLO A, HERTEM TVAN, BOKKERS E A M, et al. Performance of human observers and an automatic 3-dimensional computer-vision-based locomotion scoring method to detect lameness and hoof lesions in dairy cows[J]. Journal of Dairy Science, 2018, 101(7): 6322-6335. |
120 | PIETTE D, NORTON T, EXADAKTYLOS V, et al. Individualised automated lameness detection in dairy cows and the impact of historical window length on algorithm performance[J]. Animals. 2020, 14(2): 409-417. |
121 | O'LEARY N W, BYRNE D T, O'CONNOR A H, et al. Invited review: Cattle lameness detection with accelerometers[J]. Journal of Dairy Science, 2020, 103(5): 3895-3911. |
122 | 张珂, 吴志明, 闫若潜, 等. 奶牛养殖场生物安全体系建设的现状、问题及对策[J].动物医学进展, 2016, 37(7): 110-114. |
ZHANG K, WU M, YAN R, et al. Current situation, problems and countermeasures for construction of biosecurity system in dairy farms[J]. Progress in Veterinary Medicine, 2016, 37(7): 110-114. | |
123 | 闫河, 陈晓暾. 我国电子信息制造业出厂价格指数特征探究[J]. 价格理论与实践, 2015(10): 75-77. |
124 | KANG X, ZHANG X, LIU G. A review: Development of computer vision-based lameness detection for dairy cows and discussion of the practical applications[J]. Sensors, 2021, 21(3): 753. |
[1] | 许瑞峰, 王瑶华, 丁文勇, 於俊琦, 闫茂仓, 陈琛. 基于改进YOLOv8和多元特征的对虾发病检测方法[J]. 智慧农业(中英文), 2024, 6(2): 62-71. |
[2] | 李道亮, 刘畅. 人工智能在水产养殖中研究应用分析与未来展望[J]. 智慧农业(中英文), 2020, 2(3): 1-20. |
[3] | 滕光辉. 畜禽设施精细养殖中信息感知与环境调控综述[J]. 智慧农业(中英文), 2019, 1(3): 1-12. |
[4] | 赵一广, 杨亮, 郑姗姗, 熊本海. 家畜智能养殖设备和饲喂技术应用研究现状与发展趋势[J]. 智慧农业(中英文), 2019, 1(1): 20-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||