1 |
金琰, 刘海清, 刘恩平. 我国菠萝种植区域优势研究[J]. 中国农业资源与区划, 2014, 35(3): 100-104.
|
|
JIN Y, LIU H Q, LIU E P. Study on the regional advantages of pineapple planting in China[J]. Chinese journal of agricultural resources and regional planning, 2014, 35(3): 100-104.
|
2 |
刘传和, 刘岩, 谢盛良, 等. 不同成熟度菠萝果实香气成分分析[J]. 热带作物学报, 2009, 30(2): 234-237.
|
|
LIU C H, LIU Y, XIE S L, et al. Analysis of aroma components of pineapple fruit at different ripening stages[J]. Chinese journal of tropical crops, 2009, 30(2): 234-237.
|
3 |
刘胜辉, 孙伟生, 陆新华, 等. 6个菠萝品种成熟果实香气成分分析[J]. 热带作物学报, 2015, 36(6): 1179-1185.
|
|
LIU S H, SUN W S, LU X H, et al. Analysis of aromatic components in ripe fruits of 6 pineapple cultivars[J]. Chinese journal of tropical crops, 2015, 36(6): 1179-1185.
|
4 |
FORTUNA-CERVANTES J M, RAMÍREZ-TORRESMT, MARTINEZ-CARRANZA J, et al. Object detection in aerial navigation using wavelet transform and convolutional neural networks: A first approach[J]. Proceedings of the institute for system programming of the RAS, 2021, 33(2): 149-162.
|
5 |
GAI R, CHEN N, YUAN H.A detection algorithm for cherry fruits based on the improved YOLOv4 model[J].Neural computing and application,2021,35(19):13895-13906.
|
6 |
CHEN M C, CHENG Y T, LIU C Y.Implementation of a fruit quality classification application using an artificial intelligence algorithm[J].Sensors and materials: An international journal on sensor technology, 2022,34(1),151-162.
|
7 |
KUZNETSOVA A, MALEVA T, SOLOVIEV V.Using YOLOv3 algorithm with pre- and post-processing for apple detection in fruit-harvesting robot[J]. Agronomy, 2020, 10(7): 1016-1035.
|
8 |
ZHANG Y D, DONG Z C, CHEN X Q, et al. Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation[J]. Multimedia tools and applications, 2019, 78(3): 3613-3632.
|
9 |
CHAIKAEW A, THANAVANICH T, DUANGTANG P, et al. Convolutional neural network for pineapple ripeness classification machine[C]// 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Piscataway, NJ, USA: IEEE, 2020: 373-376.
|
10 |
CUONGN H H, TRINHTH, MEESAD P, et al. Improved YOLO object detection algorithm to detect ripe pineapple phase[J]. Journal of intelligent& fuzzy systems: Applications in engineering andtechnology, 2022, 43(1): 1365-1381.
|
11 |
张星, 高巧明, 潘栋, 等. 基于改进YOLOv3的田间复杂环境下菠萝拾捡识别研究[J]. 中国农机化学报, 2021, 42(1): 201-206.
|
|
ZHANG X, GAO Q M, PAN D, et al. Picking recognition research of pineapple in complex field environment based on improved YOLOv3[J]. Journal of Chinese agricultural mechanization, 2021, 42(1): 201-206.
|
12 |
LIU T H, NIE X N, WU J M, et al. Pineapple (Ananas comosus) fruit detection and localization in natural environment based on binocular stereo vision and improved YOLOv3 model[J]. Precision agriculture, 2023, 24(1): 139-160.
|
13 |
茅智慧, 朱佳利, 吴鑫, 等. 基于YOLO的自动驾驶目标检测研究综述[J]. 计算机工程与应用, 2022, 58(15): 68-77.
|
|
MAO Z H, ZHU J L, WU X, et al. Review of YOLO based target detection for autonomous driving[J]. Computer engineering and applications, 2022, 58(15): 68-77.
|
14 |
WANG X, GAO J S, HOU B J, et al. A lightweight modified YOLOX network using coordinate attention mechanism for PCB surface defect detection[J]. IEEE sensors journal, 2022, 22(21): 20910-20920.
|
15 |
XU D Q, WU Y Q. Improved YOLOv3 with DenseNet for multi-scale remote sensing target detection[J]. Sensors, 2020, 20(15): ID 4276.
|
16 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conferenceon Computer Visionand Pattern Recognition. Piscataway, NJ, USA: IEEE, 2014: 580-587.
|
17 |
SUN Y Y, MA S, SUN S Y, et al. Partial discharge pattern recognition of transformers based on MobileNets convolutional neural network[J]. Applied sciences, 2021, 11(15): ID 6984.
|
18 |
LI J P, ZHU K Y, WANG F, et al. Deep neural network-based real time fish detection method in the scene of marine fishing supervision[J]. Journal of intelligent& fuzzy systems: Applications in engineering and technology, 2021, 41(3): 4527-4532.
|