Smart Agriculture ›› 2023, Vol. 5 ›› Issue (1): 1-21.doi: 10.12133/j.smartag.SA202301007
• 专题--农产品智慧供应链 • 下一篇
收稿日期:
2023-01-10
出版日期:
2023-03-30
基金项目:
作者简介:
王 想,博士,讲师,研究方向为物联网与农业信息化。E-mail:wxzrjj@cau.edu.cn
通信作者:
张小栓,博士,教授,研究方向为智慧农业、智能传感与工业工程。E-mail:zhxshuan@cau.edu.cnWANG Xiang(), ZOU Jingui, LI You, SUN Yun, ZHANG Xiaoshuan()
Received:
2023-01-10
Online:
2023-03-30
Foundation items:
EU Switch Asia project (ACA/2021/428-472)About author:
WANG Xiang, E-mail:wxzrjj@cau.edu.cn
Corresponding author:
ZHANG Xiaoshuan, E-mail:zhxshuan@cau.edu.cn
摘要:
能效评估与碳排放核算可为食品冷链节能减排策略的制定提供理论工具和实践支持,同时也是实现食品冷链可持续发展的先决条件。本文首先阐述了一般食品冷链中能耗与碳排放的关系,以及太阳能值、标准煤和等效电3种能耗折算标准的原理及应用,并对食品冷链各环节能源消耗情况进行了分析。在此基础上,从宏观能效、微观能效、能源经济、环境能效、综合能效5个方面提出了10个能效指标,构建了食品冷链能效评估指标体系,并综述了其他能效评估指标和方法。此外,本文还介绍了碳排放折算标准,重点对中国电力碳排放因子作了论述,并回顾了排放因子法、生命周期评价法、投入产出法,以及混合生命周期评价法4种碳排放核算方法的由来、原理以及优缺点等,以及生命周期评价法在食品冷链碳足迹计算中的基本流程,并提出了食品冷链节能减排策略。最后,对食品冷链的能效评估与碳排放核算进行了简要展望,以期为推动中国食品冷链的可持续发展提供借鉴。
中图分类号:
王想, 邹金桂, 李由, 孙韵, 张小栓. 食品冷链能效评估与碳排放核算研究综述[J]. 智慧农业(中英文), 2023, 5(1): 1-21.
WANG Xiang, ZOU Jingui, LI You, SUN Yun, ZHANG Xiaoshuan. Review on Energy Efficiency Assessment and Carbon Emission Accounting of Food Cold Chain[J]. Smart Agriculture, 2023, 5(1): 1-21.
表4
5种能效评估指标的比较
技术模型/方法 | 产品类型 | 原理 | 优点 | 缺点 |
---|---|---|---|---|
基于单位能量因数能耗法的节能潜力评估模型[ | 鲜食葡萄 | 供应链实际单位能量因素与理论单位能量因素之比,其值越高,节能潜力越低 | 反映平均节能潜力,计算简单方便,易应用 | 难以反映供应链各环节储运输条件、质量损失等对能耗的影响 |
实际比能耗模型[ | 乳制品: 奶酪 | 供应链各阶段比能耗之和与各阶段质量损失之和的比值即为实际总比能耗,反映每生产一单位最终产品所需的能耗 | 同时考虑各种能耗影响因素,计算精度高;能反映供应链各环节能效水平的高低 | 参数多,难获取,计算过程较为复杂,且有些参数和公式由试验获得,增加了计算误差 |
基于灰色关联理论的星级评价[ | 炼油企业产品 | 灰色关联聚类分析各类装置能耗指标数据,将其分成三类,再将每一类平均值作为星级范围临界值,依据所确定的三个临界值把各装置能耗划分为四类,即四个星级 | 宏观层面分析企业的总体能耗水平,能评估各装置能耗合理性 | 只能依靠现有能耗数据,不能对各过程能源消耗进行单独计算 |
基于能量密度指数的综合评价指标[ | 炼油企业产品 | 参照EII方法建立新的关于化工及其他装置的能量密度指数,两能量密度指数与两类装置权重赋值的乘积之和即为能效综合评价指标,其数值越小,代表该炼厂能效水平越高 | 衡量综合能耗水平,普适性较好;考虑了工艺装置不同因素对装置能耗产生的影响;能实现同行业不同企业间的能耗水平对比 | EII与产品质量没有关联;能耗基准为国外装置统计值,没有考虑地区生产技术差异,国内应用相对局限 |
单位可比综合能耗模型[ | 石灰 | 修正后的石灰综合能耗与合格石灰产量之比即为该产品的单位可比综合能耗 | 考虑不同场景下能源折标系数的改变;可有效对比同行业不同企业的能耗水平 | 石灰修正系数算法的普适性不强,修正系数具有特殊性 |
表6
碳排放核算方法的对比
方法 | 排放因子法 | 生命周期评价法 | 投入产出法 | 混合生命周期评价法 |
---|---|---|---|---|
起源 | IPCC | 20世纪60年代末美国开展的一系列针对包装品的分析和评价 | 提出者Wassily W. Leontief [ | 提出者Clark W Bullard等[ |
范围 | 各尺度的能源碳排放 | 产品、组织等微观层面 | 中宏观层面 | 宏观和中微观各类系统 |
优点 | 数据获取容易,计算过程较为简便 | 核算结果具有针对性;系统、准确、全面,十分适用于食品冷链碳排放的核算 | 避免了截断误差;能明确各部门间直、间接碳排放关系;可进行结构路径分析,发现供应链上的热点 | 具有LCA法的针对性和IOA法边界的完整性,相对减少了碳排放核算过程中的时间和精力的投入 |
缺陷 | 仅能核算直接能源的碳排放;碳排放系数对IPCC的依耐性较强,没有考虑地区发展的差异性,时效性较差 | 存在由主观确定系统边界产生的截断误差[ | 较强时间滞后性;不同数据库碳排放核算的特异性;存在部门聚合误差[ | 矩阵系数繁杂,计算过程更为繁琐;对人员理论要求较高,普适性不强;碳排放核算精度存在争议 |
1 | United Nations Environment Programme. UNEP food waste index report 2021[R/OL]. [2021-03-04]. . |
2 | Food and Agriculture Organization of the United Nations.The state of food and agriculture 2019. Moving forward on food loss and waste reduction[EB/OL]. . |
3 | MERCIER S, VILLENEUVE S, MONDOR M, et al. Time-temperature management along the food cold chain: A review of recent developments[J]. Comprehensive reviews in food science and food safety, 2017, 16(4): 647-667. |
4 | KISSINGER M, TUVIA-ALKALAI S, SHALOM Y, et al. Characterization of physiological and biochemical factors associated with postharvest water loss in ripe pepper fruit during storage[J]. Journal of the American society for horticultural science, 2005, 130(5): 735-741. |
5 | SARR J, JEAN-LUC D, GUILPART J, 等. 全球食品冷链碳足迹分析[J]. 制冷技术, 2021, 41(4): 82-87. |
SARR J, DUPONT J, GUILPART J, et al. Carbon footprint analysis of global food cold chain[J]. Chinese journal of refrigeration technology, 2021, 41(4): 82-87. | |
6 | International Institute of Refrigeration. The role of refrigeration in worldwide nutrition[EB/OL]. [2020-03-26]. . |
7 | KITINOJA L. PEF White Paper: Use of cold chains for reducing food losses in developing countries[R/OL]. PineLa, Oregon, USA: The Postharvest Education Foundation, 2013, No. 13-03. . |
8 | COULOMB D. Refrigeration and cold chain serving the global food industry and creating a better future: Two key IIR challenges for improved health and environment[J]. Trends in food science & technology, 2008, 19(8): 413-417. |
9 | DONG Y B, MILLER S A. Assessing the lifecycle greenhouse gas (GHG) emissions of perishable food products delivered by the cold chain in China[J]. Journal of cleaner production, 2021, 303: ID 126982. |
10 | USUBIAGA-LIAÑO A, BEHRENS P, DAIOGLOU V. Energy use in the global food system[J]. Journal of industrial ecology, 2020, 24(4): 830-840. |
11 | WANG L Y, ZHAO L, MAO G Z, et al. Way to accomplish low carbon development transformation: A bibliometric analysis during 1995-2014[J]. Renewable and sustainable energy reviews, 2017, 68: 57-69. |
12 | MARCHI B, BETTONI L, ZANONI S. Assessment of energy efficiency measures in food cold supply chains: A dairy industry case study[J]. Energies, 2022, 15(19): ID 6901. |
13 | ODUM H T. Self-organization, transformity, and information[J]. Science, 1988, 242(4882): 1132-1139. |
14 | ODUM H T. Environmental accounting: EMERGY and environmental decision making[M]. New York: Wiley, 1996. |
15 | 张改景, 龙惟定, 张洁. 可再生能源可持续性评价的能值分析法研究[J]. 建筑科学, 2010, 26(10): 181-186. |
ZHANG G J, LONG W D, ZHANG J. Study on emergy analysis method for sustainable evaluation of renewable energy[J]. Building science, 2010, 26(10): 181-186. | |
16 | 冯建英. 设施葡萄栽培技术效益评价研究[D]. 北京: 中国农业大学, 2013. |
FENG J.Evaluation on the technical benefits of the protected grape cultivation[D]. Beijing: China Agricultural University, 2013. | |
17 | OZKAN B, FERT C, KARADENIZ C F. Energy and cost analysis for greenhouse and open-field grape production[J]. Energy, 2007, 32(8): 1500-1504. |
18 | WEI X M, CHEN B, QU Y H, et al. Emergy analysis for 'Four in One' peach production system in Beijing[J]. Communications in nonlinear science and numerical simulation, 2009, 14(3): 946-958. |
19 | 骆世明. 农业生态学[M]. 北京: 中国农业出版社, 2001. |
LUO S M. Agroecology[M]. Beijing: China Agriculture Press, 2001. | |
20 | 王红彦. 基于生命周期评价的秸秆沼气集中供气工程能值分析[D]. 北京: 中国农业科学院, 2016. |
WANG H Y. Emergy analysis of straw biogas project for central gas supply based on life cycle assessement[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. | |
21 | NEAD. National environmental accounting database V 2.0[EB/OL]. . |
22 | 席运官, 钦佩. 稻鸭共作有机农业模式的能值评估[J]. 应用生态学报, 2006, 17(2): 237-242. |
XI Y G, QIN P. Emergy value evaluation on rice-duck organic farming mode[J]. Chinese journal of applied ecology, 2006, 17(2): 237-242. | |
23 | 蒋爱华, 时章明, 梅炽, 等. "电力当量折标煤"统计制度对节能减排的负面影响[J]. 统计与决策, 2009(6): 13-14. |
JIANG A H, SHI Z M, MEI Z, et al. Negative impact of the statistical system of "converting electric power equivalent into standard coal" on energy conservation and emission reduction[J]. Statistics & Decision, 2009(6): 13-14. | |
24 | 国家市场监督管理总局, 国家标准化管理委员会. 综合能耗计算通则: [S]. 北京: 中国标准出版社, 2020. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. General rules for calculation of the comprehensive energy consumption: [S]. Beijing: Standards Press of China, 2020. | |
25 | ZHOU X, ZHOU M H, ZHANG M. Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China[J]. Natural hazards, 2016, 81(3): 1405-1433. |
26 | 中电联统计与数据中心. 2020年电力统计基本数据一览表[EB/OL]. [2021-12-09]. . |
27 | 江亿, 杨秀. 在能源分析中采用等效电方法[J]. 中国能源, 2010, 32(5): 5-11. |
JIANG Y, YANG X. Electricity equivalent application in energy analysis[J]. Energy of China, 2010, 32(5): 5-11. | |
28 | 江亿, 刘晓华, 薛志峰, 等. 能源转换系统评价指标的研究[J]. 中国能源, 2004, 26(3): 27-31. |
JIANG Y, LIU X H, XUE Z F, et al. Study on ECC index of energy conversion system[J]. Energy of China, 2004(3): 28-32. | |
29 | 李妍, 习文青, 刘子嫣, 等. 能源综合服务站系统的能流分析方法与能效评估[J]. 电力建设, 2022, 43(4): 140-148. |
LI Y, XI W Q, LIU Z Y, et al. Energy flow analysis method and energy efficiency evaluation of integrated energy service station system[J]. Electric power construction, 2022, 43(4): 140-148. | |
30 | 赵赫. 生态工业园区综合能源系统能效评估及优化模型研究[D]. 北京: 华北电力大学, 2022. |
ZHAO H. Study on energy efficiency evaluation and optimization model of integrated energy system in eco-industrial park[D]. Beijing: North China Electric Power University, 2022. | |
31 | 乔富荣. 城市公共机构运行能耗综合评价与节能潜力分析[D]. 广州: 华南理工大学, 2020. |
QIAO F R. Operation energy consumption comprehensive evaluation and energy saving potential analysis in urban public institutions[D]. Guangzhou: South China University of Technology, 2020. | |
32 | MARCHI B, ZANONI S. Cold chain energy analysis for sustainable food and beverage supply[J]. Sustainability, 2022, 14(18): ID 11137. |
33 | XIAO X Q, ZHANG X, FU Z T, et al. Energy conservation potential assessment method for table grapes supply chain[J]. Sustainability, 2018, 10(8): ID 2845. |
34 | DIAZ F, VIGNATI J A, MARCHI B, et al. Effects of energy efficiency measures in the beef cold chain: A life cycle-based study[J]. Environmental and climate technologies, 2021, 25(1): 343-355. |
35 | ZHANG H C, LI H. An energy factor based systematic approach to energy-saving product design[J]. CIRP annals, 2010, 59(1): 183-186. |
36 | 谢小华. 完全能耗评价指标的建立及应用[J]. 炼油技术与工程, 2012, 42(9): 49-53. |
XIE X H. Establishment of evaluation index of complete energy consumption and application[J]. Petroleum refinery engineering, 2012, 42(9): 49-53. | |
37 | 董爽, 杨慧杰, 段潍超. 基于EII的石油化工企业能效评价指标数学模型建立的研究[J]. 山东化工, 2022, 51(15): 129-132. |
DONG S, YANG H J, DUAN W C. Research on the establishment of mathematical model of energy efficiency evaluation index for petrochemical enterprises based on EII[J]. Shandong chemical industry, 2022, 51(15): 129-132. | |
38 | 周英明, 吴国忠, 李栋, 等. 灰色关联分析法在原油集输系统能耗评价中的应用[J]. 油气田地面工程, 2009, 28(2): 14-15. |
ZHOU Y M, WU G Z, LI D, et al. Application of grey relational analysis method in energy consumption evaluation of crude oil gathering and transportation system[J]. Oil-gasfield surface engineering, 2009, 28(2): 14-15. | |
39 | 冯洪庆, 杨肖曦, 刘道建, 等. 应用灰色关联理论开展炼油装置能耗星级评价的研究[J]. 化工机械, 2013, 40(6): 713-718. |
FENG H Q, YANG X X, LIU D J, et al. Study on gray relation theory application in energy-consuming evaluation of refining unit[J]. Chemical engineering & machinery, 2013, 40(6): 713-718. | |
40 | 董超, 张亚华, 贲道春, 等. 石灰单位产品可比综合能耗评价的探讨[J]. 江苏建材, 2022(2): 1-4. |
DONG C, ZHANG Y H, BEN D C, et al. Discussion on evaluation of comparable comprehensive energy consumption of lime unit product[J]. Jiangsu building materials, 2022(2): 1-4. | |
41 | 计军平, 马晓明. 碳足迹的概念和核算方法研究进展[J]. 生态经济, 2011, 27(4): 76-80. |
JI J P, MA X M. Review of carbon footprint: Definitions and accounting methods[J]. Ecological economy, 2011, 27(4): 76-80. | |
42 | 翟超颖, 龚晨. 碳足迹研究与应用现状:一个文献综述[J]. 海南金融, 2022(5): 39-50. |
ZHAI C Y, GONG C. Research and application of carbon footprint: A literature review[J]. Hainan finance, 2022(5): 39-50. | |
43 | JACOBSON M Z. 100% clean, renewable energy and storage for everything[M/OL].New York: Cambridge University Press,[2023-01-05]. |
44 | 田长青, 孔繁臣, 张海南. 冷链碳减排技术途径及成效测算[J]. 制冷与空调, 2022, 22(3): 72-77. |
TIAN C Q, KONG F C, ZHANG H N. Technical approach and estimation of cold chain carbon emission reduction[J]. Refrigeration and air-conditioning, 2022, 22(3): 72-77. | |
45 | 刘晃, 车轩. 中国水产养殖二氧化碳排放量估算的初步研究[J]. 南方水产, 2010, 6(4): 77-80. |
LIU H, CHE X. Elementary study on evaluation of CO2 emissions from aquaculture in China[J]. South China fisheries science, 2010, 6(4): 77-80. | |
46 | 金书秦, 陈洁. 我国水产养殖的直接能耗及碳排放研究[J]. 中国渔业经济, 2012, 30(1): 73-82. |
JIN S Q, CHEN J. A study on energy consumption and carbon emission of China's aquaculture[J]. Chinese fisheries economics, 2012, 30(1): 73-82. | |
47 | 孙志超. 碳达峰背景下广东省班线客运企业二氧化碳排放核算方法研究[J]. 交通节能与环保, 2022, 18(5): 60-64. |
SUN Z C. Research on the accounting method of CO2 emissions for line passenger transport enterprises in Guangdong Province under the background of carbon peaking[J]. Transport energy conservation & environmental protection, 2022, 18(5): 60-64. | |
48 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 温室气体排放核算与报告要求 第1部分:发电企业: [S]. 北京: 中国标准出版社, 2016. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Requirements of the greenhouse gas emission accounting and reporting—Part 1: Power generation enterprise: [S]. Beijing: Standards Press of China, 2016. | |
49 | 中华人民共和国生态环境部. 关于做好2022年企业温室气体排放报告管理相关重点工作的通知[EB/OL]. [2022-03-15]. . |
50 | 张琦峰, 方恺, 徐明, 等. 基于投入产出分析的碳足迹研究进展[J]. 自然资源学报, 2018, 33(4): 696-708. |
ZHANG Q F, FANG K, XU M, et al. Review of carbon footprint research based on input-output analysis[J]. Journal of natural resources, 2018, 33(4): 696-708. | |
51 | 周丁琳. 中国居民直接生活能源碳排放分析与减排路径研究[D]. 武汉: 华中科技大学, 2021. |
ZHOU D L. Analysis of carbon emissions from Chinese residential direct energy consumption and research on emission reduction paths[D]. Wuhan: Huazhong University of Science and Technology, 2021. | |
52 | LIU Z, GUAN D B, WEI W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565): 335-338. |
53 | 付伟, 罗明灿, 陈建成. 碳足迹及其影响因素研究进展与展望[J]. 林业经济, 2021, 43(8): 39-49. |
FU W, LUO M C, CHEN J C. Research progress and prospects of carbon footprint and its influencing factors[J]. Forestry economics, 2021, 43(8): 39-49. | |
54 | JENSEN A A, HOFFMAN L, MOLLER B T, et al. Life cycle assessment—A guide to approaches, experiences and information sources[R]. Environmental Issues Series No.6. Copenhagen: European Environmental Agency, 1997. |
55 | KLÖPFFER W. Life cycle assessment[J]. Environmental science and pollution research, 1997, 4(4): 223-228. |
56 | HELLWEG S, MILÀ I CANALS L. Emerging approaches, challenges and opportunities in life cycle assessment[J]. Science, 2014, 344(6188): 1109-1113. |
57 | International Organization for Standardization. Environmental management-life-cycle assessment-principles and framework: [S]. Geneva: International Organization for Standardization, 2006. |
58 | 黄娜, 王洪涛, 范辞冬, 等. 基于不确定度和敏感度分析的LCA数据质量评估与控制方法[J]. 环境科学学报, 2012, 32(6): 1529-1536. |
HUANG N, WANG H T, FAN C D, et al. LCA data quality assessment and control based on uncertainty and sensitivity analysis[J]. Acta scientiae circumstantiae, 2012, 32(6): 1529-1536. | |
59 | BAMBER N, TURNER I, ARULNATHAN V, et al. Comparing sources and analysis of uncertainty in consequential and attributional life cycle assessment: Review of current practice and recommendations[J]. The international journal of life cycle assessment, 2020, 25(1): 168-180. |
60 | MAHMOOD A, VARABUNTOONVIT V, MUNGKALASIRI J, et al. A tier-wise method for evaluating uncertainty in life cycle assessment[J]. Sustainability, 2022, 14(20): ID 13400. |
61 | BJÖRKLUND A E. Survey of approaches to improve reliability in lca[J]. The international journal of life cycle assessment, 2002, 7(2): 64-72. |
62 | VAN STAPPEN F, MATHOT M, LORIERS A, et al. Sensitive parameters in local agricultural life cycle assessments: The illustrative case of cereal production in Wallonia, Belgium[J]. The international journal of life cycle assessment, 2018, 23(2): 225-250. |
63 | STOESSEL F, JURASKE R, PFISTER S, et al. Life cycle inventory and carbon and water FoodPrint of fruits and vegetables: Application to a Swiss retailer[J]. Environmental science & technology, 2012, 46(6): 3253-3262. |
64 | WU W T, BERETTA C, CRONJE P, et al. Environmental trade-offs in fresh-fruit cold chains by combining virtual cold chains with life cycle assessment[J]. Applied energy, 2019, 254: ID 113586. |
65 | 陈静, 王姗, 欧灿英, 等. 生鲜肉类食品供应链碳排放测算及动态优化研究[J]. 中国农业大学学报, 2020, 25(6): 165-182. |
CHEN J, WANG S, OU C Y, et al. Study on carbon emission measurement and dynamic optimization of fresh meat supply chain[J]. Journal of China agricultural university, 2020, 25(6): 165-182. | |
66 | 蔡依平, 张文娟, 张世翔, 等. 基于生命周期评估的冷链物流碳足迹计算[J]. 物流技术, 2015, 34(1): 120-123, 130. |
CAI Y P, ZHANG W J, ZHANG S X, et al. Calculation of carbon footprint of cold chain logistics based on life circle assessment[J]. Logistics technology, 2015, 34(1): 120-123, 130. | |
67 | 缪小红, 周新年, 倪川, 等. 基于生命周期法的生鲜农产品供应链碳足迹分析[J]. 兰州文理学院学报(自然科学版), 2021, 35(1): 24-29. |
MIAO X H, ZHOU X N, NI C, et al. Comparative analysis of carbon footprint of fresh agricultural products based on LCA[J]. Journal of Lanzhou university of arts and science (natural science), 2021, 35(1): 24-29. | |
68 | 刘广海, 吴俊章, 游力, 等. 冷链物流系统碳足迹模型构建与实证分析[J]. 制冷学报, 2018, 39(4): 19-25. |
LIU G H, WU J Z, YOU L, et al. Carbon footprint of cold chain system and a case analysis[J]. Journal of refrigeration, 2018, 39(4): 19-25. | |
69 | LEONTIEF W W. Quantitative input and output relations in the economic systems of the United States[J]. The review of economics and statistics, 1936, 18(3): ID 105. |
70 | LENZEN M. Errors in conventional and input-output—Based life—Cycle inventories[J]. Journal of industrial ecology, 2000, 4(4): 127-148. |
71 | MINX J, PETERS G, WIEDMANN T, et al. GHG emissions in the global supply chain of food products[C]// International Input-Output Meeting on Managing the Environment. Seville, Spain: International Input-Output Association, 2008. |
72 | TANTIWATTHANAPHANICH T, SHAO X, HUANG L Q, et al. Evaluating carbon footprint embodied in Japanese food consumption based on global supply chain[J]. Structural change and economic dynamics, 2022, 63: 56-65. |
73 | CAMANZI L, ALIKADIC A, COMPAGNONI L, et al. The impact of greenhouse gas emissions in the EU food chain: A quantitative and economic assessment using an environmentally extended input-output approach[J]. Journal of cleaner production, 2017, 157: 168-176. |
74 | MINX J C, WIEDMANN T, WOOD R, et al. Input–output analysis and carbon footprinting: An overview of applications[J]. Economic systems research, 2009, 21(3): 187-216. |
75 | BULLARD C W, PENNER P S, PILATI D A. Net energy analysis[J]. Resources and energy, 1978, 1(3): 267-313. |
76 | 王长波, 张力小, 庞明月. 生命周期评价方法研究综述——兼论混合生命周期评价的发展与应用[J]. 自然资源学报, 2015, 30(7): 1232-1242. |
WANG C B, ZHANG L X, PANG M Y. A review on hybrid life cycle assessment: Development and application[J]. Journal of natural resources, 2015, 30(7): 1232-1242. | |
77 | SUH S, HUPPES G. Methods for life cycle inventory of a product[J]. Journal of cleaner production, 2005, 13(7): 687-697. |
78 | YANG Y, HEIJUNGS R, BRANDÃO M. Hybrid life cycle assessment (LCA) does not necessarily yield more accurate results than process-based LCA[J]. Journal of cleaner production, 2017, 150: 237-242. |
79 | POMPONI F, LENZEN M. Hybrid life cycle assessment (LCA) will likely yield more accurate results than process-based LCA[J]. Journal of cleaner production, 2018, 176: 210-215. |
80 | PERKINS J, SUH S. Uncertainty implications of hybrid approach in LCA: Precision versus accuracy[J]. Environmental science & technology, 2019, 53(7): 3681-3688. |
81 | DONG Y B, MILLER S A, KEOLEIAN G A. Estimating the greenhouse gas emissions of cold chain infrastructure in China from 2021 to 2060[J]. Sustainable production and consumption, 2022, 31: 546-556. |
82 | 李斌, 刘斌, 陈爱强, 等. 基于冷链模式的某果蔬碳足迹计算[J]. 制冷学报, 2021, 42(2): 158-166. |
LI B, LIU B, CHEN A Q, et al. Calculation of carbon footprint of fruits and vegetables based on cold chain model[J]. Journal of refrigeration, 2021, 42(2): 158-166. | |
83 | HANNAH R, MAX R. "Environmental Impacts of Food Production"[EB/OL]. [2022-12-01]. . |
84 | 许茹楠, 刘斌, 陈爱强, 等. 我国果蔬冷链碳足迹分析[J]. 制冷学报, 2018, 39(4): 13-18, 25. |
XU R N, LIU B, CHEN A Q, et al. Analysis of cold chain carbon footprint of fruits and vegetables in China[J]. Journal of refrigeration, 2018, 39(4): 13-18, 25. | |
85 | 李斌, 刘斌, 陈爱强, 等. 基于冷链模式的农产品冷链碳足迹计算[J]. 冷藏技术, 2019, 42(3): 1-5. |
LI B, LIU B, CHEN A Q, et al. Calculation of carbon footprint of agricultural products based on the model of cold chain[J]. Journal of refrigeration technology, 2019, 42(3): 1-5. | |
86 | 康友才. 仓储系统低碳性的综合评价体系研究[D]. 成都: 西南交通大学, 2012. |
KANG Y C. Research on low-carbon comprehensive evluation setup of storage system[D]. Chengdu: Southwest Jiaotong University, 2012. | |
87 | 付淑娥, 郭岳达. 空调制冷剂与全球气候变暖[J]. 生态经济, 2022, 38(12): 5-8. |
FU S E, GUO Y D. Air conditioning refrigerant and global warming[J]. Ecological economy, 2022, 38(12): 5-8. | |
88 | 高浩然, 张玉林, 张顺顺.考虑时效性和品质性满意度约束的易腐品冷链物流配送研究[J/OL]. 控制与决策:1-10. . |
GAO H R, ZHANG Y L, ZHANG S S. Research on cold chain logistics distribution of perishable products considering timeliness and quality customer satisfaction[J/OL]. Control and decision:1-10. . | |
89 | 刘思远, 陈天恩, 陈栋, 等. 时变多车型下的生鲜农产品配送路径优化模型[J]. 智慧农业(中英文), 2021, 3(3): 139-151. |
LIU S Y, CHEN T E, CHEN D, et al. Time-varying heterotypic-vehicle cold chain logistics distribution path optimization model[J]. Smart agriculture, 2021, 3(3): 139-151. | |
90 | 冯杰, 史立. 生鲜产品的纯电动冷藏车配送路径问题研究[J]. 计算机工程与应用, 2019, 55(9): 237-242. |
FENG J, SHI L. Research on vehicle routing problem of fresh products with pure electric refrigerator truck[J]. Computer engineering and applications, 2019, 55(9): 237-242. | |
91 | SHA Y S, HUA W S, CAO H F, et al. Properties and encapsulation forms of phase change material and various types of cold storage box for cold chain logistics: A review[J]. Journal of energy storage, 2022, 55: ID 105426. |
92 | LIU M, SAMAN W, BRUNO F. Computer simulation with TRNSYS for a mobile refrigeration system incorporating a phase change thermal storage unit[J]. Applied energy, 2014, 132: 226-235. |
93 | 刘广海, 马平川, 李庆庭, 等. 冷链专用蓄冷托盘设计与控温运输性能测试[J]. 农业工程学报, 2021, 37(16): 295-302. |
LIU G H, MA P C, LI Q T, et al. Design of special cold chain pallet and its temperature-controlled transport performance test[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(16): 295-302. | |
94 | DEFRAEYE T, TAGLIAVINI G, WU W T, et al. Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains[J]. Resources, conservation and recycling, 2019, 149: 778-794. |
95 | SHOJI K, SCHUDEL S, ONWUDE D, et al. Mapping the postharvest life of imported fruits from packhouse to retail stores using physics-based digital twins[J]. Resources, conservation and recycling, 2022, 176: ID 105914. |
[1] | 杨霖, 刘双印, 徐龙琴, 赫敏, 绳庆峰, 韩佳伟. 多源信息融合下冷链配送车辆碳排放动态预测方法[J]. 智慧农业(中英文), 2024, 6(4): 138-148. |
[2] | 杨斌, 韩佳伟, 杨霖, 任青山, 杨信廷. 中国低碳冷链物流发展水平评价体系研究[J]. 智慧农业(中英文), 2023, 5(1): 44-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||