1 |
GOKARN S, CHOUDHARY A. Modeling the key factors influencing the reduction of food loss and waste in fresh produce supply chains[J]. Journal of environmental management, 2021, 294: ID 113063.
|
2 |
ANAND S, BARUA M K. Modeling the key factors leading to post-harvest loss and waste of fruits and vegetables in the agri-fresh produce supply chain[J]. Computers and electronics in agriculture, 2022, 198: ID 106936.
|
3 |
WIŚNIEWSKI T, TUNDYS B. Comparative analysis of sustainability factors in supply chain links. Evidence of empirical research[J]. Procedia computer science, 2022, 207(C): 3358-3366.
|
4 |
APEJI U D, SUNMOLA F T. Principles and factors influencing visibility in sustainable supply chains[J]. Procedia computer science, 2022, 200(C): 1516-1527.
|
5 |
郭明德, 李红. 农产品冷链物流发展水平评价——基于12典型省市数据分析[J]. 商业经济研究, 2019(1): 125-127.
|
|
GUO M D, LI H. Evaluation on the development level of agricultural cold chain logistics—Based on the data analysis of 12 typical provinces and cities[J]. Journal of commercial economics, 2019(1): 125-127.
|
6 |
王姗姗, 魏遥. 中国农产品物流发展水平评价研究——基于因子分析法和熵值法的分析[J]. 信阳师范学院学报(哲学社会科学版), 2020, 40(4): 40-45.
|
|
WANG S S, WEI Y. Research on evaluation of China's aqricultural product logistics development leve—Based on factor analysis and analysis of entropy method[J]. Journal of Xinyang normal university (philosophy and social sciences edition), 2020, 40(4): 40-45.
|
7 |
张妍. 基于AHP的生鲜农产品冷链物流影响因素评价分析[J]. 农村经济与科技, 2019, 30(1): 162-163.
|
|
ZHANG Y. Evaluation and analysis on influencing factors of cold chain logistics of fresh agricultural products based on AHP[J]. Rural economy and science-technology, 2019, 30(1): 162-163.
|
8 |
剌美香, 李玉萍. 基于FAHP的山西省农产品冷链物流综合评价[J]. 山西农业科学, 2017, 45(8): 1349-1352, 1360.
|
|
LA M X, LI Y P. Comprehensive evaluation of the cold-chain logistics for the agricultural products in Shanxi Province based on FAHP[J]. Journal of Shanxi agricultural sciences, 2017, 45(8): 1349-1352, 1360.
|
9 |
谢清玲. 中国东部地区水产品冷链物流发展水平评价——基于熵-模糊物元分析法[D]. 广州: 仲恺农业工程学院, 2020.
|
|
XIE Q L. Evaluation of aquatic products cold chain logistics development level in eastern China: Based on Entropy-fuzzy Matter-element[D]. Guangzhou: Zhongkai University of Agriculture and Engineering, 2020.
|
10 |
田玉洁, 谢庆红, 王子豪. 基于AHP-熵权法的生鲜农产品冷链物流安全评价[J]. 保鲜与加工, 2019, 19(5): 185-190.
|
|
TIAN Y J, XIE Q H, WANG Z H. Safety assessment of fresh agricultural products cold chain logistics based on AHP-entropy weight method[J]. Storage and process, 2019, 19(5): 185-190.
|
11 |
张于贤, 黄鑫, 刘瑞环. 基于熵权灰色关联法的中部地区农产品物流发展评价研究[J]. 商业经济研究, 2017(21): 88-91.
|
|
ZHANG Y X, HUANG X, LIU R H. Research on evaluation of agricultural products logistics development in central China based on entropy weight grey correlation method[J]. Journal of commercial economics, 2017(21): 88-91.
|
12 |
李云, 桂海霞, 王向前, 等. 基于熵权-Topsis的中部地区低碳物流发展水平评价[J]. 衡阳师范学院学报, 2022, 43(3): 115-120.
|
|
LI Y, GUI H X, WANG X Q, et al. Evaluation of low carbon logistics development level in central China based on entropy weight TOPSIS[J]. Journal of Hengyang normal university, 2022, 43(3): 115-120.
|
13 |
伦家兴. 中国31个省市物流产业发展水平综合评价研究[J]. 投资与创业, 2021, 32(2): 50-52, 55.
|
|
LUN J X. Study on comprehensive evaluation of logistics industry development level in 31 provinces and cities of China[J]. Investment and entrepreneurship, 2021, 32(2): 50-52, 55.
|
14 |
石雪斌. 基于模糊物元的江苏省农产品物流发展水平评价与提升研究[D]. 南京: 南京农业大学, 2019.
|
|
SHI X B. Development level of agricultural products logistics in Jiangsu province based on fuzzy matter element evaluation and promotion research[D]. Nanjing: Nanjing Agricultural University, 2019.
|
15 |
王晓宇, 黄铭. 基于熵权灰色关联法的物流发展水平评价——以安徽省为例[J]. 黑河学院学报, 2020, 11(9): 50-53.
|
|
WANG X Y, HUANG M. Evaluation of logistics development level based on entropy grey relational method—Taking Anhui Province as an example[J]. Journal of Heihe university, 2020, 11(9): 50-53.
|
16 |
徐耀群, 程林. 基于TOPSIS的生鲜农产品冷链物流企业评价研究[J]. 物流技术, 2017, 36(10): 87-91.
|
|
XU Y Q, CHENG L. Study on evaluation of fresh farm produce cold chain logistics enterprise based on TOPSIS[J]. Logistics technology, 2017, 36(10): 87-91.
|
17 |
饶淑雯. 福建省区域物流能力评价及提升建议——基于熵权-TOPSIS法[J]. 物流科技, 2022, 45(18): 45-49.
|
|
RAO S W. On evaluation and improvement suggestions of regional logistics capacity in Fujian province—Based on entropy-weighting TOPSIS method[J]. Logistics sci-tech, 2022, 45(18): 45-49.
|
18 |
李丹丹, 刘锐, 陈动. 中国省域碳排放及其驱动因子的时空异质性研究[J]. 中国人口·资源与环境, 2013, 23(7): 84-92.
|
|
LI D D, LIU R, CHEN D. Research on space-time heterogeneity of carbon emission and influencing factors in provinces of China[J]. China population, resources and environment, 2013, 23(7): 84-92.
|
19 |
孙忠秋, 李爽, 程承旗. 基于ESDA的长三角区域经济差异分析[J]. 地理信息世界, 2016, 23(1): 71-79.
|
|
SUN Z Q, LI S, CHENG C Q. Analyzing regional economic disparities based on ESDA in Yangtze River Delta[J]. Geomatics world, 2016, 23(1): 71-79.
|
20 |
ANSELIN L. Local indicators of spatial association-LISA [J]. Geographical analysis, 2010, 27(2): 93-115.
|
21 |
周广亮, 吴明. 中原城市群物流业发展水平时空分异及影响因素分析[J]. 河南理工大学学报(自然科学版), 2021, 40(5): 90-98.
|
|
ZHOU G L, WU M. Analysis of spatial-temporal differentiation and influencing factors of logistics industry development level in the central plains urban agglomeration[J]. Journal of Henan polytechnic university (natural science), 2021, 40(5): 90-98.
|
22 |
杨青, 彭若慧, 刘星星, 等. 基于地理加权回归的省域碳排放影响因素研究[J]. 环境工程技术学报, 2023, 13(1): 54-62.
|
|
YANG Q, PENG R H, LIU X X, et al. Study on influencing factors of provincial carbon emission based on geographically weighted regression[J]. Journal of environmental engineering technology, 2023, 13(1): 54-62.
|
23 |
尹硕. 基于我国现状的冷链物流发展之路探究[J]. 中国储运, 2022(11): 205-207.
|
|
YIN S. Research on the development of cold chain logistics based on China's current situation[J]. China storage & transport, 2022(11): 205-207.
|
24 |
吴佳佳. 冷链物流发展存在的问题及对策研究[J]. 中国集体经济, 2022(31): 106-108.
|
|
WU J J. Research on the problems and countermeasures in the development of cold chain logistics[J]. China collective economy, 2022(31): 106-108.
|
25 |
韩佳伟, 李佳铖, 任青山, 等. 农产品智慧物流发展研究[J]. 中国工程科学, 2021, 23(4): 30-36.
|
|
HAN J W, LI J C, REN Q S, et al. Development strategy of intelligent logistics for agricultural products[J]. Strategic study of CAE, 2021, 23(4): 30-36.
|