1 |
SINGH A K, DHIMAN T K, V S L G B, et al. Dimanganese trioxide (Mn2O3) based label-free electrochemical biosensor for detection of aflatoxin-B1[J]. Bioelectrochemistry (amsterdam, Netherlands), 2021, 137: ID 107684.
|
2 |
WANG C J, ZHANG L, LUO J Y, et al. Development of a sensitive indirect competitive enzyme-linked immunosorbent assay for high-throughput detection and risk assessment of aflatoxin B1 in animal-derived medicines[J]. Toxicon: Official journal of the International Society on Toxinology, 2021, 197: 99-105.
|
3 |
JAHANGIRI-DEHAGHANI F, ZARE H R, SHEKARI Z, et al. Development of an electrochemical aptasensor based on Au nanoparticles decorated on metal-organic framework nanosheets and p-biphenol electroactive label for the measurement of aflatoxin B1 in a rice flour sample[J]. Analytical and bioanalytical chemistry, 2022, 414(5): 1973-1985.
|
4 |
FENG B B, YOU J, ZHAO F, et al. A ratiometric fluorescent aptamer homogeneous biosensor based on hairpin structure aptamer for AFB1 detection[J]. Journal of fluorescence, 2022, 32(5): 1695-1701.
|
5 |
LI Q, LI Y, GAO Q, et al. Real-time monitoring of isothermal nucleic acid amplification on a smartphone by using a portable electrochemical device for home-testing of SARS-CoV-2[J]. Analytica chimica acta, 2022, 1229: ID 340343.
|
6 |
SHI L, WANG Z F, YANG G M, et al. A novel electrochemical immunosensor for aflatoxin B1 based on Au nanoparticles-poly 4-aminobenzoic acid supported graphene[J]. Applied surface science, 2020, 527: ID 146934.
|
7 |
AKGÖNÜLLÜ S, YAVUZ H, DENIZLI A. SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1[J]. Talanta, 2020, 219: ID 121219.
|
8 |
GELETA G S, ZHAO Z, WANG Z. A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B1[J]. Analyst, 2018, 143: 1644-1649.
|
9 |
ZHENG W L, TENG J, CHENG L, et al. Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor[J]. Biosensors & bioelectronics, 2016, 80: 574-581.
|
10 |
WANG P F, LUO B, LIU K, et al. A novel COOH-GO-COOH-MWNT/pDA/AuNPs based electrochemical aptasensor for detection of AFB1[J]. RSC Advances, 2022, 12(43): 27940-27947.
|
11 |
王文廉, 牛博怀, 王玉. 用于智能手机的无源POCT尿酸检测系统设计[J]. 传感技术学报, 2021, 34(3): 413-419.
|
|
WANG W L, NIU B H, WANG Y. Design of passive POCT uric acid detection system based on smart phone[J]. Chinese journal of sensors and actuators, 2021, 34(3): 413-419.
|
12 |
管海翔, 陈娟, 祁欣. 基于高灵敏度电化学传感器的有害气体检测系统设计[J]. 北京化工大学学报(自然科学版), 2020, 47(2): 107-114.
|
|
GUAN H X, CHEN J, QI X. A measurement system for harmful gases based on a high sensitivity electrochemical sensor[J]. Journal of Beijing university of chemical technology (natural science edition), 2020, 47(2): 107-114.
|
13 |
ZHANG R, ZHANG J, TAN F, et al. Multi-channel AgNWs-doped interdigitated organic electrochemical transistors enable sputum-based device towards noninvasive and portable diagnosis of lung cancer[J]. Materials today bio, 2022, 16: ID 100385.
|
14 |
XIA S Q, PAN J F, DAI D S, et al. Design of portable electrochemiluminescence sensing systems for point-of-care-testing applications[J]. Chinese chemical letters, 2023, 34(5): ID 107799.
|
15 |
DU Y X, MO Z L, WANG J A, et al. A novel chiral carbon nanocomposite based on cellulose gum modifying chiral tri-electrode system for the enantiorecognition of tryptophan[J]. Journal of electroanalytical chemistry, 2021, 895: ID 115390.
|
16 |
LIU Y B, HUANG Z, XU Q, et al. Portable electrochemical micro-workstation platform for simultaneous detection of multiple Alzheimer's disease biomarkers[J]. Microchimica acta, 2022, 189(3): ID 91.
|
17 |
郭文川, 李思睿, 杨烨, 等. 基于LED的便携式牛乳亚硝酸盐含量检测仪研究[J]. 农业机械学报, 2022, 53(10): 379-385.
|
|
GUO W C, LI S R, YANG Y, et al. Study on portable nitrite content detector in milk based on LED[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(10): 379-385.
|
18 |
甄俊杰, 曾令文. 便携式电化学粮食重金属离子检测仪的研制[J]. 现代食品, 2022, 28(11): 97-101.
|
|
ZHEN J J, ZENG L W. Development of a portable electrochemical detector for grain heavy metal ions[J]. Modern food, 2022, 28(11): 97-101.
|
19 |
周兴辉, 胡敬芳, 宋钰, 等. 基于树莓派的便携式水质重金属电化学检测系统[J]. 现代电子技术, 2021, 44(23): 134-137.
|
|
ZHOU X H, HU J F, SONG Y, et al. Portable water quality heavy metal electrochemical detection system based on Raspberry Pi[J]. Modern electronics technique, 2021, 44(23): 134-137.
|
20 |
SCOTT A, SAKIB S, SAHA S, et al. A portable and smartphone-operated photoelectrochemical reader for point-of-care biosensing[J]. Electrochimica acta, 2022, 419: ID 140347.
|
21 |
CORDOVA-HUAMAN A V, JAUJA-CCANA V R, LA ROSA-TORO A. Low-cost smartphone-controlled potentiostat based on Arduino for teaching electrochemistry fundamentals and applications[J]. Heliyon, 2021, 7(2): ID e06259.
|
22 |
HAO N, HUA R, ZHANG K, et al. A sunlight powered portable photoelectrochemical biosensor based on a potentiometric resolve ratiometric principle[J]. Analytical chemistry, 2018, 90(22): 13207-13211.
|
23 |
ZHOU Z Z, WANG J, LI G H, et al. Wireless USB-like electrochemical platform for individual electrochemical sensing in microdroplets[J]. Analytica chimica acta, 2022, 1197: ID 339526.
|
24 |
WANG C M, HSIEH C H, CHEN C Y, et al. Low-voltage driven portable paper bipolar electrode-supported electrochemical sensing device[J]. Analytica chimica acta, 2018, 1015: 1-7.
|
25 |
KHETANI S, SINGH A, BESLER B, et al. μDrop: Multi-analyte portable electrochemical-sensing device for blood-based detection of cleaved tau and neuron filament light in traumatic brain injury patients[J]. Biosensors & bioelectronics, 2021, 178: ID 113033.
|
26 |
邹绍维, 燕朝果, 梁东江, 等. 基于模糊PID控制的阴极保护恒电位仪设计[J]. 机电工程技术, 2021, 50(11): 243-246.
|
|
ZOU S W, YAN C G, LIANG D J, et al. Design of cathodic protection potentiostat based on fuzzy PID control[J]. Mechanical & electrical engineering technology, 2021, 50(11): 243-246.
|
27 |
郭志涛, 杨文乐, 卢成钢, 等. 数字恒电位仪远程自动化监控系统设计[J]. 单片机与嵌入式系统应用, 2020, 20(7): 32-36.
|
|
GUO Z T, YANG W L, LU C G, et al. Design of digital potentiostat remote automation monitoring system[J]. Microcontrollers & embedded systems, 2020, 20(7): 32-36.
|
28 |
程楚皓, 林伟国. 便携式水体重金属离子浓度快速检测仪设计[J]. 电子测量技术, 2019, 42(2): 112-116.
|
|
CHENG C H, LIN W G. Design of portable instrument forrapid detection of heavy metal ion concentration in water[J]. Electronic measurement technology, 2019, 42(2): 112-116.
|
29 |
ZHONG T T, LI S S, LI X, et al. A label-free electrochemical aptasensor based on AuNPs-loaded zeolitic imidazolate framework-8 for sensitive determination of aflatoxin B1[J]. Food chemistry, 2022, 384: ID 132495.
|
30 |
PIERINI G D, MACCIO S A, ROBLEDO S N, et al. Screen-printed electrochemical-based sensor for taxifolin determination in edible peanut oils[J]. Microchemical journal, 2020, 159: ID 105442.
|
31 |
LI Y Y, LIU D, ZHU C X, et al. Sensitivity programmable ratiometric electrochemical aptasensor based on signal engineering for the detection of aflatoxin B1 in peanut[J]. Journal of hazardous materials, 2020, 387: ID 122001.
|
32 |
MACIEL-SILVA F W, LACHOS-PEREZ D, BULLER L S, et al. Green extraction processes for complex samples from vegetable matrices coupled with on-line detection system: A critical review[J]. Molecules, 2022, 27(19): ID 6272.
|