Smart Agriculture ›› 2023, Vol. 5 ›› Issue (2): 126-148.doi: 10.12133/j.smartag.SA202306002
收稿日期:
2023-06-02
出版日期:
2023-06-30
基金项目:
Received:
2023-06-02
Online:
2023-06-30
Foundation items:
Technological Innovation 2030 "New Generation Artificial Intelligence" Major Project (2021ZD0113604); Ministry of Finance and Ministry of Agriculture and Rural Affairs: National Modern Agricultural Industry Technology System (CARS-23-D07)
Corresponding author:
ZHAO Chunjiang, E-mail:zhaocj@nercita.org.cn
摘要:
[目的/意义] 农业环境动态多变、动植物生长影响因子众多且互作关系复杂,如何将分散无序信息理解生成生产知识或决策案例是世界性难题。农业知识智能服务技术是应对农业数据低秩化、规则关联度低和推理可解释性差等现状,提升农业生产全过程综合预测和决策分析能力的核心关键。[进展]本文综合分析了感知识别、知识耦合、推理决策等农业知识智能服务技术,构建由云计算支撑环境、大数据处理框架、知识组织管理工具、知识服务应用场景组成的农业知识智能服务平台,提出一种基于知识规则和事实案例相结合的农情解析与生产推理决策方法,构造产前规划、产中管理、收获作业、产后经营等全链条知识智能应用场景。[结论/展望]从农业多尺度农情稀疏特征发现与时空态势识别、农业跨媒体知识图谱构建与自演化更新、复杂成因农情多粒度关联与多模式协同反演预测、基于生成式人工智能的农业领域大语言模型设计、知识智能服务平台与新范式构建等方面对农业知识智能服务技术发展趋势进行总结,对实现农业生产由“看天而作”到“知天而作”转变具有技术支撑作用。
中图分类号:
赵春江. 农业知识智能服务技术综述[J]. 智慧农业(中英文), 2023, 5(2): 126-148.
ZHAO Chunjiang. Agricultural Knowledge Intelligent Service Technology: A Review[J]. Smart Agriculture, 2023, 5(2): 126-148.
表1
基于机器视觉的农业目标检测技术对比
模型 | 特点 | 作物类型 | 结果 | |
---|---|---|---|---|
两阶段农业目标检测 | Faster R-CNN[ | 针对背景复杂、多尺度小目标特征检测表现良好 | 番茄病虫害定位检测 | 平均识别精度达到85.98% |
改进Faster R-CNN[ | 采用区域特征聚集改进Faster R-CNN兴趣区域池化层,以降低特征量化误差 | 小麦锯蝇、小麦蚜、小麦螨 | 平均精度均值达到81.0% | |
MR3P-TS[ | 扩展了Mask R-CNN中Mask分支,通过计算掩模的多个连通域的面积,识别出了采摘主要部分 | 茶芽轮廓和采摘点检测 | 采摘点定位Pr=94.9, Recall=91% | |
一阶段农业目标检测 | 改进SSD网络[ | 融合多尺度卷积核和空洞卷积模块提高特征检测识别能力 | 原木端面识别 | 检测精确率达到97% |
GSC-YOLOv3[ | 将GhostNet作为主干网络,使用空间金字塔池化结构增强特征提取 | 红花丝检测 | 平均精度均值达到91.89% | |
YOLOv4-GCF[ | YOLOv4采用GhostNet作为主干网络,利用注意力机制CBAM提高检测精度 | 荔枝病虫害检测 | 平均精度达到89.76% | |
YOLOv4-Dense[ | YOLOv4结合DenseNet网络将先验框改为符合形状的圆形标记框 | 樱桃果实检测定位 | F1值达到0.947 | |
GHTR2-YOLOv5s[ | YOLOv5s融合卷积块注意力模块和加权双向特征金字塔网络,具有更高的检测精度 | 苹果果实病害检测 | 平均精度均值达到90.9% |
1 | 吕璐成, 韩涛. 人工智能赋能知识服务,开启智能数字农业未来——2020全国图书情报青年学术论坛会议综述[J]. 农业图书情报学报, 2021, 33(12): 83-88. |
LYU L C, HAN T. Artificial intelligence enables knowledge service and opens up the future of intelligent agriculture: Review of 2020 national library and information youth academic forum[J]. Journal of library and information science in agriculture, 2021, 33(12): 83-88. | |
2 | 傅隆生, 宋珍珍, ZHANG X, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120. |
FU L S, SONG Z Z, ZHANG X, et al. Applications and research progress of deep learning in agriculture[J]. Journal of China agricultural university, 2020, 25(2): 105-120. | |
3 | 曹书林, 史佳欣, 侯磊, 等. 知识库问答研究进展与展望[J]. 计算机学报, 2023, 46(3): 512-539. |
CAO S L, SHI J X, HOU L, et al. Question answering over knowledge base: An overview[J]. Chinese journal of computers, 2023, 46(3): 512-539. | |
4 | 岳学军, 蔡雨霖, 王林惠, 等. 农情信息智能感知及解析的研究进展[J]. 华南农业大学学报, 2020, 41(6): 14-28. |
YUE X J, CAI Y L, WANG L H, et al. Research progress of intelligent perception and analytics of agricultural information[J]. Journal of South China agricultural university, 2020, 41(6): 14-28. | |
5 | 李亚文, 刘爱军, 陈垚. 基于GLCM纹理特征提取的黄瓜叶部病害检测算法研究[J]. 湖北农业科学, 2022, 61(9): 141-145. |
LI Y W, LIU A J, CHEN Y. Research on cucumber leaf disease detection algorithm based on GLCM texture feature extraction[J]. Hubei agricultural sciences, 2022, 61(9): 141-145. | |
6 | 闫明壮, 王浩云, 吴媛媛, 等. 基于光谱与纹理特征融合的绿萝叶绿素含量检测[J]. 南京农业大学学报, 2021, 44(3): 568-575. |
YAN M Z, WANG H Y, WU Y Y, et al. Detection of chlorophyll content of Epipremnum aureum based on fusion of spectrum and texture features[J]. Journal of Nanjing agricultural university, 2021, 44(3): 568-575. | |
7 | ELSTONE L, HOW KY, BRODIE S.et al. High speed crop and weed for precision weeding[J]. Sensors, 2020, 20(2): ID 455. |
8 | 尹彦鑫, 孟志军, 赵春江, 等. 大田无人农场关键技术研究现状与展望[J]. 智慧农业(中英文), 2022, 4(4): 1-25. |
YIN Y X, MENG Z J, ZHAO C J, et al. State-of-the-art and prospect of research on key technical for unmanned farms of field corp[J]. Smart agriculture, 2022, 4(4): 1-25. | |
9 | 沈明霞, 丁奇安, 陈佳, 等. 信息感知技术在畜禽养殖中的研究进展[J]. 南京农业大学学报, 2022, 45(5): 1072-1085. |
SHEN M X, DING Q A, CHEN J, et al. A review of information perception technology in livestock breeding[J]. Journal of Nanjing agricultural university, 2022, 45(5): 1072-1085. | |
10 | 陈佳云, 徐向英, 章永龙, 等. 多模态知识图谱在农业中的研究进展[J]. 农业大数据学报, 2022, 4(3): 126-134. |
CHEN J Y, XU X Y, ZHANG Y L, et al. Research progress of multimodal knowledge graph in agriculture[J]. Journal of agricultural big data, 2022, 4(3): 126-134. | |
11 | ZHOU J, LI J, WANG C, et al. Crop disease identification and interpretation method based on multimodal deep learning[J]. Computers and Electronics in Agriculture, 2021, 189(3): ID 106408. |
12 | 赵鹏飞, 赵春江, 吴华瑞, 等. 基于BERT的多特征融合农业命名实体识别[J]. 农业工程学报, 2022, 38(3): 112-118. |
ZHAO P F, ZHAO C J, WU H R, et al. Recognition of the agricultural named entities with multi-feature fusion based on BERT[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(3): 112-118. | |
13 | 袁培森, 李润隆, 王翀, 等. 基于BERT的水稻表型知识图谱实体关系抽取研究[J]. 农业机械学报, 2021, 52(5): 151-158. |
YUAN P S, LI R L, WANG C, et al. Entity relationship extraction from rice phenotype knowledge graph based on BERT[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(5): 151-158. | |
14 | WANG M, WANG H F, QI G L, et al. Richpedia: A large-scale, comprehensive multi-modal knowledge graph[J]. Big data research, 2020, 22: ID 100159. |
15 | 张宇, 郭文忠, 林森, 等. 深度学习与知识推理相结合的研究综述[J]. 计算机工程与应用, 2022, 58(1): 56-69. |
ZHANG Y, GUO W Z, LIN S, et al. Review on combination of deep learning and knowledge reasoning[J]. Computer engineering and applications, 2022, 58(1): 56-69. | |
16 | 白皓然, 孙伟浩, 金宁, 等. 基于改进Bi-LSTM-CRF的农业问答系统研究[J]. 中国农机化学报, 2023, 44(2): 99-105. |
BAI H R, SUN W H, JIN N, et al. Research on agricultural question answering system based on improved Bi-LSTM-CRF[J]. Journal of Chinese agricultural mechanization, 2023, 44(2): 99-105. | |
17 | FRIHA O, FERRAG M A, SHU L, et al. Internet of Things for the future of smart agriculture: A comprehensive survey of emerging technologies[J]. IEEE/CAA journal of automatica Sinica, 2021, 8(4): 718-752. |
18 | 于合龙, 丁民权, 黄浦, 等. 基于ZigBee网络的人参生长监测及病害预警[J]. 吉林农业大学学报, 2017, 39(1): 120-126. |
YU H L, DING M Q, HUANG P, et al. Growth monitoring and disease early warning of ginseng based on ZigBee network[J]. Journal of Jilin agricultural university, 2017, 39(1): 120-126. | |
19 | 田有文, 吴伟, 卢时铅, 等. 深度学习在水果品质检测与分级分类中的应用[J]. 食品科学, 2021, 42(19): 260-270. |
TIAN Y W, WU W, LU S Q, et al. Application of deep learning in fruit quality detection and grading[J]. Food science, 2021, 42(19): 260-270. | |
20 | ZHOU H Y, WANG X, AU W, et al. Intelligent robots for fruit harvesting: Recent developments and future challenges[J]. Precision agriculture, 2022, 23(5): 1856-1907. |
21 | LI G M, HUANG Y B, CHEN Z Q, et al. Practices and applications of convolutional neural network-based computer vision systems in animal farming: A review[J]. Sensors, 2021, 21(4): ID 1492. |
22 | CHOUHAN S S, SINGH U P, JAIN S. Applications of computer vision in plant pathology: A survey[J]. Archives of computational methods in engineering, 2020, 27(2): 611-632. |
23 | 郝王丽, 尉培岩, 郝飞, 等. 基于YOLOv4和自适应锚框调整的谷穗检测方法[J]. 智慧农业(中英文), 2021, 3(1): 63-74. |
HAO W L, YU P Y, HAO F, et al. Foxtail millet ear detection approach based on YOLOv4 and adaptive anchor box adjustment[J]. Smart Agriculture, 2021, 3(1): 63-74. | |
24 | FUENTES A, YOON S, KIM S C, et al. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition[J]. Sensors, 2017, 17(9): ID 2022. |
25 | QIAN S W, DU J M, ZHOU J A, et al. An effective pest detection method with automatic data augmentation strategy in the agricultural field[J]. Signal image and video processing, 2023, 17(2): 563-571. |
26 | YAN L J, WU K H, LIN J, et al. Identification and picking point positioning of tender tea shoots based on MR3P-TS model[J]. Frontiers in plant science, 2022, 13: ID 962391. |
27 | 胡笑天, 王克俭, 王超, 等. 一种基于改进SSD的原木端面识别方法[J]. 林业工程学报, 2023, 8(1): 141-149. |
HU X T, WANG K J, WANG C, et al. Development of log end face recognition method based on improved SSD[J]. Journal of forestry engineering, 2023, 8(1): 141-149. | |
28 | 张振国, 邢振宇, 赵敏义, 等. 改进YOLOv3的复杂环境下红花丝检测方法[J]. 农业工程学报, 2023, 39(3): 162-170. |
ZHANG Z G, XING Z Y, ZHAO M Y, et al. Detecting safflower filaments using an improved YOLOv3 under complex environments[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(3): 162-170. | |
29 | 王卫星, 刘泽乾, 高鹏, 等. 基于改进YOLOv4的荔枝病虫害检测模型[J]. 农业机械学报, 2023, 54(5): 227-235. |
WANG W X, LIU Z Q, GAO P, et al. Detection of Litchi diseases and insect pests based on improved YOLOv4 model[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(5): 227-235. | |
30 | GAI R L, CHEN N, YUAN H. A detection algorithm for cherry fruits based on the improved YOLOv4 model[J]. Neural computing and applications, 2023, 35(19): 13895-13906. |
31 | 孙丰刚, 王云露, 兰鹏, 等. 基于改进YOLOv5s和迁移学习的苹果果实病害识别方法[J]. 农业工程学报, 2022, 38(11): 171-179. |
SUN F G, WANG Y L, LAN P, et al. Identification of apple fruit diseases using improved YOLOv5s and transfer learning[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(11): 171-179. | |
32 | BARI BS, ISLAM N, RASHID M, et al. A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework[J]. PeerJ computer science, 2021: ID e432. |
33 | GONG X L, ZHANG S J. A high-precision detection method of apple leaf diseases using improved faster R-CNN[J]. Agriculture basel, 2023, 13(2): ID 240. |
34 | ZHOU G X, ZHANG W Z, CHEN A B, et al. Rapid detection of rice disease based on FCM-KM and faster R-CNN fusion[J]. IEEE access, 2019, 7: 143190-143206. |
35 | XIE X Y, MA Y, LIU B, et al. A deep-learning-based real-time detector for grape leaf diseases using improved convolutional neural networks[J]. Frontiers in plant science, 2020, 11: ID 751. |
36 | ZHAO S Y, LIU J Z, WU S. Multiple disease detection method for greenhouse-cultivated strawberry based on multiscale feature fusion Faster R_CNN[J]. Computers and electronics in agriculture, 2022, 199: ID 107176. |
37 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 779-788. |
38 | BHATT P V, SARANGI S, PAPPULA S. Detection of diseases and pests on images captured in uncontrolled conditions from tea plantations[C]// Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV. Baltimore, MD, USA. 2019, 11008: 73-82. |
39 | 何海清, 严椰丽, 凌梦云, 等. 结合三维密集点云的无人机影像大豆覆盖度提取[J]. 农业工程学报, 2022, 38(2): 201-209. |
HE H Q, YAN Y L, LING M Y, et al. Extraction of soybean coverage from UAV images combined with 3D dense point cloud[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(2): 201-209. | |
40 | CHANG L H, FAN H C, ZHU N N, et al. A two-stage approach for individual tree segmentation from TLS point clouds[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2022, 15: 8682-8693. |
41 | LI Z Y, CHEN P, SHUAI L Y, et al. A copy paste and semantic segmentation-based approach for the classification and assessment of significant rice diseases[J]. Plants, 2022, 11(22): ID 3174. |
42 | BARROS T, CONDE P, GONCALVES G, et al. Multispectral vineyard segmentation: A deep learning comparison stud[J]. Computers and electronics in agriculture, 2022, 195: ID 106782. |
43 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2015: 3431-3440. |
44 | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[M]// Lecture notes in computer science. Cham: Springer International Publishing, 2015: 234-241. |
45 | HUANG X B, CHEN A B, ZHOU G X, et al. Tomato leaf disease detection system based on FC-SNDPN[J]. Multimedia tools and applications, 2023, 82(2): 2121-2144. |
46 | LI Q, JIA W, SUN M, et al. A novel green apple segmentation algorithm based on ensemble U-Net under complex orchard environment[J]. Computers and electronics in agriculture, 2021, 180: ID 105900. |
47 | LIU G Q, BAI L, ZHAO M Q, et al. Segmentation of wheat farmland with improved U-Net on drone images[J]. Journal of applied remote sensing, 2022, 16(3): ID 034511. |
48 | NARUSHIN V G, LU G, CUGLEY J, et al. A 2-D imaging-assisted geometrical transformation method for non-destructive evaluation of the volume and surface area of avian eggs[J]. Food control, 2020, 112: ID 107112. |
49 | ZHANG S W, WANG H X, HUANG W Z, et al. Plant diseased leaf segmentation and recognition by fusion of superpixel, K-means and PHOG[J]. Optik, 2018, 157: 866-872. |
50 | YUE Y J, LI X S, ZHAO H, et al. Image segmentation method of crop diseases based on improved segnet neural network[C]// 2020 IEEE International Conference on Mechatronics and Automation (ICMA). Piscataway, NJ, USA: IEEE, 2020: 1986-1991. |
51 | KHAN M A, AKRAM T, SHARIF M, et al. CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features[J]. Computers and electronics in agriculture, 2018, 155: 220-236. |
52 | TASSIS L M, TOZZI DE SOUZA J E, KROHLING R A. A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images[J]. Computers and electronics in agriculture, 2021, 186: ID 106191. |
53 | 张明岳, 吴华瑞, 朱华吉. 基于卷积模型的农业问答语性特征抽取分析[J]. 农业机械学报, 2018, 49(12): 203-210. |
ZHANG M Y, WU H R, ZHU H J. Analysis of extraction of semantic feature in agricultural question and answer based on convolutional model[J]. Transactions of the Chinese society for agricultural machinery, 2018, 49(12): 203-210. | |
54 | LUO W L, ZHANG L. Question text classification method of tourism based on deep learning model[J]. Wireless communications and mobile computing, 2022, 2022: 1-9. |
55 | 王郝日钦, 吴华瑞, 冯帅, 等. 基于Attention_DenseCNN的水稻问答系统问句分类[J]. 农业机械学报, 2021, 52(7): 237-243. |
WANG H R Q, WU H R, FENG S, et al. Classification technology of rice questions in question answer system based on Attention_DenseCNN[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(7): 237-243. | |
56 | PATIL R R, KUMAR S. Rice-fusion: A multimodality data fusion framework for rice disease diagnosis[J]. IEEE access, 2022, 10: 5207-5222. |
57 | KIRYO R, NIU G, DU PLESSIS M C, et al. Positive-unlabeled learning with non-negative risk estimator[EB/OL]. arXiv: , 2017. |
58 | ALAHADH S, HABIB S, ISLAM M, et al. An efficient pest detection framework with a medium-scale benchmark to increase the agricultural productivity[J]. Sensors, 2022, 22(24): ID 9749. |
59 | 王文军, 余银峰. 考虑数据稀疏的知识图谱缺失连接自动补全算法[J]. 吉林大学学报(工学版), 2022, 52(6): 1428-1433. |
WANG W J, YU Y F. Automatic completion algorithm for missing links in nowledge graph considering data sparsity[J]. Journal of Jilin university (engineering and technology edition), 2022, 52(6): 1428-1433. | |
60 | 张宁豫, 谢辛, 陈想, 等. 基于知识协同微调的低资源知识图谱补全方法[J]. 软件学报, 2022, 33(10): 3531-3545. |
ZHANG N Y, XIE X, CHEN X, et al. Knowledge collaborative fine-tuning for low-resource knowledge graph completion[J]. Journal of software, 2022, 33(10): 3531-3545. | |
61 | 王郝日钦, 王晓敏, 缪祎晟, 等. 基于BERT-Attention-DenseBiGRU的农业问答社区问句相似度匹配[J]. 农业机械学报, 2022, 53(1): 244-252. |
WANG H R Q, WANG X M, MIAO Y S, et al. Densely connected BiGRU neural network based on BERT and attention mechanism for Chinese agriculture-related question similarity matching[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(1): 244-252. | |
62 | 赵宏, 郭岚, 陈志文, 等. 基于多模态融合与多层注意力的视频内容文本表述研究[J]. 计算机工程, 2022, 48(10): 45-54. |
ZHAO H, GUO L, CHEN Z W, et al. Research on text representation of video content based on multi-modal fusion and multi-layer attention[J]. Computer engineering, 2022, 48(10): 45-54. | |
63 | ELAVARASAN D, VINCENT P M D R. A reinforced random forest model for enhanced crop yield prediction by integrating agrarian parameters[J]. Journal of ambient intelligence and humanized computing, 2021, 12(11): 10009-10022. |
64 | 刘会丹, 万雪芬, 崔剑, 等. 基于深度强化学习的耕作层土壤水分、温度预测[J]. 华南农业大学学报, 2023, 44(1): 84-92. |
LIU H D, WAN X F, CUI J, et al. Moisture and temperature prediction in tillage layer based on deep reinforcement learning[J]. Journal of South China agricultural university, 2023, 44(1): 84-92. | |
65 | 宋浩楠, 赵刚, 王兴芬. 融合知识表示和深度强化学习的知识推理方法[J]. 计算机工程与应用, 2021, 57(19): 189-197. |
SONG H N, ZHAO G, WANG X F. Knowledge reasoning method combining knowledge representation with deep reinforcement learning[J]. Computer engineering and applications, 2021, 57(19): 189-197. | |
66 | 白京波. 思远农业: 互联网+现代农业社会化服务[J]. 农业工程技术, 2017, 37(12): 78-80. |
BAI J B. Philip burkart agriculture: Socialization service of modern agriculture in Internet plus[J]. Agricultural engineering technology, 2017, 37(12): 78-80. | |
67 | 姜芸, 王军, 杨继文. 基于遥感技术的黑土区耕地质量评价指标体系研究进展分析[J]. 测绘工程, 2023, 32(1): 1-7, 13. |
JIANG Y, WANG J, YANG J W. Research progress analysis of black soil region cultivated land quality evaluation index by remote sensing[J]. Engineering of surveying and mapping, 2023, 32(1): 1-7, 13. | |
68 | 钱凤魁, 项子璇, 王贺兴, 等. 基于最小数据集与LESA体系的县域耕地质量评价[J]. 农业工程学报, 2023, 39(8): 239-248. |
QIAN F K, XIANG Z X, WANG H X, et al. Evaluating cultivated land quality in County territory using the minimum data set, land evaluation and site assessment(LESA)[J]. Transactions of the Chinese society of agricultural engineering, 2023: 39(8): 239-248. | |
69 | 蒋绍淮, 周冬梅, 蔡立群. 山丹县耕地质量等级评价及肥力分析研究[J]. 国土与自然资源研究, 2023(3): 23-28. |
JIANG S H, ZHOU D M, CAI L Q. The evaluation of quality grade and nutrient analysis of cultivated land in Shandan County[J]. Territory & natural resources study, 2023(3): 23-28. | |
70 | 李建军, 白鹏飞. 我国智慧农业创新实践的现实挑战与应对策略[J]. 科学管理研究, 2023, 41(2): 127-134. |
LI J J, BAI P F. Realistic challenges and countermeasures of China's smart agriculture innovation practice[J]. Scientific management research, 2023, 41(2): 127-134. | |
71 | MICHAEL C, LEE J. New approaches to irrigation scheduling of vegetables[J]. Horticulturae, 2017, 3(2): 1-20. |
72 | DOS SANTOS U J L, PESSIN G, COSTA C ADA, et al. AgriPrediction: A proactive Internet of Things model to anticipate problems and improve production in agricultural crops[J]. Computers and electronics in agriculture, 2019, 161: 202-213. |
73 | 黄文江, 师越, 董莹莹, 等. 作物病虫害遥感监测研究进展与展望[J]. 智慧农业, 2019, 1(4): 1-11. |
HUANG W J, SHI Y, DONG Y Y, et al. Progress and prospects of crop diseases and pests monitoring by remote sensing[J]. Smart agriculture, 2019, 1(4): 1-11. | |
74 | 张凝, 杨贵军, 赵春江, 等. 作物病虫害高光谱遥感进展与展望[J]. 遥感学报, 2021, 25(1): 403-422. |
ZHANG N, YANG G J, ZHAO C J, et al. Progress and prospects of hyperspectral remote sensing technology for crop diseases and pests[J]. National remote sensing bulletin, 2021, 25(1): 403-422. | |
75 | 李鑫格, 项方林, 吴思雨, 等. 基于植被指数时序动态的冬小麦氮素营养诊断方法[J]. 麦类作物学报, 2022, 42(1): 109-119. |
LI X G, XIANG F L, WU S Y, et al. Diagnosis methods for nitrogen status based on the time-series vegetation index in winter wheat[J]. Journal of triticeae crops, 2022, 42(1): 109-119. | |
76 | 李艳, 张成才, 恒卫东. 基于深度学习的多源遥感反演麦田土壤墒情研究[J]. 节水灌溉, 2023(2): 57-64. |
LI Y, ZHANG C C, HENG W D. Soil moisture retrieving method based on depth learning by multi-source data[J]. Water saving irrigation, 2023(2): 57-64. | |
77 | 高荣华, 白强, 王荣, 等. 改进注意力机制的多叉树网络多作物早期病害识别方法[J]. 计算机科学, 2022, 49(S1): 363-369. |
GAO R H, BAI Q, WANG R, et al. Multi-tree network multi-crop early disease recognition method based on improved attention mechanism[J]. Computer science, 2022, 49(S1): 363-369. | |
78 | 张燕, 田国英, 杨英茹, 等. 基于SVM的设施番茄早疫病在线识别方法研究[J]. 农业机械学报, 2021, 52(S1): 125-133, 206. |
ZHANG Y, TIAN G Y, YANG Y R, et al. Online detection method of tomato early blight disease based on SVM[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(S1): 125-133, 206. | |
79 | 蔡娣, 路阳, 林立媛, 等. 基于稀疏自编码和SPSO-SVM的稻瘟病早期病害识别[J]. 吉林大学学报(信息科学版), 2022, 40(3): 416-423. |
CAI D, LU Y, LIN L Y, et al. Early disease identification of rice blast based on sparse automatic encoder and SPSO-SVM[J]. Journal of Jilin university (information science edition), 2022, 40(3): 416-423. | |
80 | 张熹. 基于高光谱成像的温室黄瓜霜霉病早期检测方法研究[D]. 杨凌: 西北农林科技大学, 2021. |
ZHANG X. Study on early detection method of greenhouse cucumber downy mildew based on hyperspectral imaging[D]. Yangling: Northwest A & F University, 2021. | |
81 | KE G L, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM, 2017: 3149-3157. |
82 | CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2016: 785-794. |
83 | LIU Y W, ZHANG X, GAO Y X, et al. Improved CNN method for crop pest identification based on transfer learning[J]. Computational intelligence and neuroscience, 2022, 2022: ID 9709648. |
84 | 张银萍, 朱双杰, 徐燕, 等. 基于机器视觉的猴头菇品质快速无损检测与分级[J]. 现代食品科技, 2023, 39(3): 239-246. |
ZHANG Y P, ZHU S J, XU Y, et al. Rapid non-destructive testing and grading of Hericium erinaceus based on machine vision[J]. Modern food science and technology, 2023, 39(3): 239-246. | |
85 | 吕正超. 基于深度学习的鸡翅品质检测与重量分级研究[D]. 泰安: 山东农业大学, 2022. |
LYU Z C. Research on quality detection and weight grading of chicken wings based on deep learning[D]. Taian: Shandong Agricultural University, 2022. | |
86 | FITRI Z E, BASKARA A, MADJID A, et al. Comparison of classification for grading red dragon fruit (Hylocereus costaricensis)[J]. Jurnal nasional teknik elektro, 2022, 11(1): 43-49. |
87 | MESA A R, CHIANG J Y. Multi-input deep learning model with RGB and hyperspectral imaging for banana grading[J]. Agriculture, 2021, 11(8): ID 687. |
88 | ROPELEWSKA E, SABANCI K, ASLAN M F. Preservation effects evaluated using innovative models developed by machine learning on cucumber flesh[J]. European food research and technology, 2022, 248(7): 1929-1937. |
89 | 孙传恒, 袁晟, 罗娜, 等. 基于区块链和边缘计算的水稻原产地溯源方法研究[J]. 农业机械学报, 2023, 54(5): 359-368. |
SUN C H, YUAN S, LUO N, et al. Traceability method of rice origin based on blockchain and edge computing[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(5): 359-368. | |
90 | WANG Y J. Agricultural products price prediction based on improved RBF neural network model[J]. Applied artificial intelligence, 2023, 37(1): ID 2204600. |
91 | 喻沩舸, 吴华瑞, 彭程. 基于Lasso回归和BP神经网络的蔬菜短期价格预测组合模型研究[J]. 智慧农业(中英文), 2020, 2(3): 108-117. |
YU W G, WU H R, PENG C. Short-term price forecast of vegetables based on combination model of lasso regression method and BP neural network[J]. Smart agriculture, 2020, 2(3): 108-117. | |
92 | 罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17, 5. |
LUO X W, LIAO J, HU L, et al. Research progress of intelligent agricultural machinery and practice of unmanned farm in China[J]. Journal of South China agricultural university, 2021, 42(6): 8-17, 5. | |
93 | 吴华瑞. 智能农机赋能蔬菜产业高质量发展[J]. 蔬菜, 2021(9): 1-10. |
WU H R. Intelligent agricultural machinery empowers high-quality development of vegetable industry[J]. Vegetables, 2021(9): 1-10. | |
94 | 赵春江, 文朝武, 林森, 等. 基于级联卷积神经网络的番茄花期识别检测方法[J]. 农业工程学报, 2020, 36(24): 143-152. |
ZHAO C J, WEN C W, LIN S, et al. Tomato florescence recognition and detection method based on cascaded neural network[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(24): 143-152. | |
95 | 龙洁花, 赵春江, 林森, 等. 改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法[J]. 农业工程学报, 2021, 37(18): 100-108. |
LONG J H, ZHAO C J, LIN S, et al. Segmentation method of the tomato fruits with different maturities under greenhouse environment based on improved Mask R-CNN[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(18): 100-108. | |
96 | 文朝武, 龙洁花, 张宇, 等. 基于3D视觉的番茄授粉花朵定位方法[J]. 农业机械学报, 2022, 53(8): 320-328. |
WEN C W, LONG J H, ZHANG Y, et al. Positioning method of tomato pollination flowers based on 3D vision[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(8): 320-328. | |
97 | CHU L W. Study the operation process of factory greenhouse robot based on intelligent dispatching method[C]// 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). Piscataway, NJ: IEEE, 2022: 291-293. |
98 | 杨国峰, 杨勇. 基于BERT的常见作物病害问答系统问句分类[J]. 计算机应用, 2020, 40(6): 1580-1586. |
YANG G F, YANG Y. Question classification of common crop disease question answering system based on BERT[J]. Journal of computer applications, 2020, 40(6): 1580-1586. | |
99 | 张博凯, 李想. 基于知识图谱的Android端农技智能问答系统研究[J]. 农业机械学报, 2021, 52(S1): 164-171. |
ZHANG B K, LI X. Design of agricultural question answering system based on knowledge graph[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(S1): 164-171. | |
100 | 张彩丽, 吴赛赛, 李玮, 等. 面向农作物科学施肥管理与土壤肥力查询的农业智能问答系统[J]. 园艺与种苗, 2022, 42(10): 84-86, 92. |
ZHANG C L, WU S S, LI W, et al. Agricultural intelligent question answering system for crop scientific fertilization management and soil fertility[J]. Horticulture & seed, 2022, 42(10): 84-86, 92. | |
101 | THELWALL M, KOUSHA K. ResearchGate: Disseminating, communicating, and measuring scholarship?[J]. Journal of the association for information science and technology, 2015, 66(5): 876-889. |
102 | VAN NOORDEN R. Online collaboration: Scientists and the social network[J]. Nature, 2014, 512(7513): 126-129. |
[1] | 朱衍俊, 杜文圣, 王春颖, 刘平, 李祥. 自然环境中鲜食葡萄快速识别与采摘点自动定位方法[J]. 智慧农业(中英文), 2023, 5(2): 23-34. |
[2] | 潘晨露, 张正华, 桂文豪, 马家俊, 严晨曦, 张晓敏. 融合ECA机制与DenseNet201的水稻病虫害识别方法[J]. 智慧农业(中英文), 2023, 5(2): 45-55. |
[3] | 刘晓航, 张昭, 刘嘉滢, 张漫, 李寒, FLORES Paulo, 韩雄哲. 基于多种深度学习算法的田间玉米籽粒检测与计数[J]. 智慧农业(中英文), 2022, 4(4): 49-60. |
[4] | 张志博, 赵西宁, 高晓东, 张利, 杨孟豪. 基于改进Linknet网络的黄土高原苹果园精准提取[J]. 智慧农业(中英文), 2022, 4(3): 95-107. |
[5] | 韩冷, 何雄奎, 王昌陵, 刘亚佳, 宋坚利, 齐鹏, 刘理民, 李天, 郑义, 林桂海, 周战, 黄康, 王忠, 查海涅, 张国山, 周国涛, 马勇, 伏浩, 聂宏远, 曾爱军, 张炜. 智慧果园构建关键技术装备及展望[J]. 智慧农业(中英文), 2022, 4(3): 1-11. |
[6] | 何锐敏, 郑可锋, 尉钦洋, 张小斌, 张俊, 朱怡航, 赵懿滢, 顾清. 基于改进Mask R-CNN模型的工厂化养蚕蚕体识别与计数[J]. 智慧农业(中英文), 2022, 4(2): 163-173. |
[7] | 李东博, 黄铝文, 赵旭博. 基于介电特征的苹果霉心病检测方法[J]. 智慧农业(中英文), 2021, 3(4): 66-76. |
[8] | 龙洁花, 郭文忠, 林森, 文朝武, 张宇, 赵春江. 改进YOLOv4的温室环境下草莓生育期识别方法[J]. 智慧农业(中英文), 2021, 3(4): 99-110. |
[9] | 白铁成, 王涛, 张楠楠. 基于校正WOFOST模型的枣树生长模拟与水分利用评价[J]. 智慧农业(中英文), 2021, 3(2): 55-67. |
[10] | 赵欢, 王璟璐, 廖生进, 张颖, 卢宪菊, 郭新宇, 赵春江. 基于Micro-CT的玉米籽粒显微表型特征研究[J]. 智慧农业(中英文), 2021, 3(1): 16-28. |
[11] | 苗中华, 余孝有, 徐美红, 何创新, 李楠, 孙腾. 基于图像处理多算法融合的杂草检测方法及试验[J]. 智慧农业(中英文), 2020, 2(4): 103-115. |
[12] | 张燕, 李庆学, 吴华瑞. 基于核相互子空间法的番茄叶部病害快速识别模型[J]. 智慧农业(中英文), 2020, 2(3): 86-97. |
[13] | 季云洲, 都盛佳, 纪同奎, 宋怀波. 基于嵌入式系统的小麦条锈病远程监测平台设计与试验[J]. 智慧农业(中英文), 2019, 1(3): 100-112. |
[14] | 吴文斌, 史云, 周清波, 杨鹏, 刘海启, 王飞, 刘佳, 王利民, 张保辉. 天空地数字农业管理系统框架设计与构建建议[J]. 智慧农业(中英文), 2019, 1(2): 64-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||