1 |
亓璐, 张涛, 曾娟, 等. 近年我国水稻五大产区主要病害发生情况分析[J]. 中国植保导刊, 2021, 41(4): 37-42, 65.
|
|
QI L, ZHANG T, ZENG J, et al. Analysis of the occurrence and control of diseases in five major rice-producing areas in China in recent years[J]. China plant protection, 2021, 41(4): 37-42, 65.
|
2 |
TALBOT N J. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea [J]. Annual review of microbiology, 2003, 57: 177-202.
|
3 |
LIU M X, ZHANG S B, HU J X, et al. Phosphorylation-guarded light-harvesting complex II contributes to broad-spectrum blast resistance in rice[J]. Proceedings of the national academy of sciences of the United States of America, 2019, 116(35): 17572-17577.
|
4 |
KOBAYASHI T, KANDA E, KITADA K, et al. Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners[J]. Phytopathology, 2001, 91(3): 316-323.
|
5 |
冯雷, 柴荣耀, 孙光明, 等. 基于多光谱成像技术的水稻叶瘟检测分级方法研究[J]. 光谱学与光谱分析, 2009, 29(10): 2730-2733.
|
|
FENG L, CHAI R Y, SUN G M, et al. Identification and classification of rice leaf blast based on multi-spectral imaging sensor[J]. Spectroscopy and spectral analysis, 2009, 29(10): 2730-2733.
|
6 |
周丽娜, 于海业, 张蕾, 等. 基于叶绿素荧光光谱分析的稻瘟病害预测模型[J]. 光谱学与光谱分析, 2014, 34(4): 1003-1006.
|
|
ZHOU L N, YU H Y, ZHANG L, et al. Rice blast prediction model based on analysis of chlorophyll fluorescence spectrum[J]. Spectroscopy and spectral analysis, 2014, 34(4): 1003-1006.
|
7 |
郑仪. 水稻稻瘟病的发生规律与综合防治探讨[J]. 农业技术与装备, 2016(4): 56-57.
|
|
ZHENG Y. Occurrence regularity and comprehensive prevention and control of rice blast[J]. Agricultural technology & equipment, 2016(4): 56-57.
|
8 |
安东升, 魏长斌, 曹娟, 等. 甘蔗苗期不同叶位叶绿素荧光特性研究[J]. 热带作物学报, 2015, 36(11): 2019-2027.
|
|
AN D S, WEI C B, CAO J, et al. The study of chlorophyll fluorescence characteristics on different leaf position of three sugarcane seedling cultivars[J]. Chinese journal of tropical crops, 2015, 36(11): 2019-2027.
|
9 |
ZHANG J F, WAN L, IGATHINATHANE C, et al. Spatiotemporal heterogeneity of chlorophyll content and fluorescence response within rice (Oryza sativa L.) canopies under different nitrogen treatments[J]. Frontiers in plant science, 2021, 12: ID 645977.
|
10 |
SHI Y, HUANG W J, LUO J H, et al. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis[J]. Computers and electronics in agriculture, 2017, 141: 171-180.
|
11 |
王爽, 马占鸿, 孙振宇, 等. 基于高光谱遥感的小麦条锈病胁迫下的产量损失估计[J]. 中国农学通报, 2011, 27(21): 253-258.
|
|
WANG S, MA Z H, SUN Z Y, et al. Yield loss assessment under wheat stripe rust stress based on hyperspectral remote sensing[J]. Chinese agricultural science bulletin, 2011, 27(21): 253-258.
|
12 |
RAJI S N, SUBHASH N, RAVI V, et al. Detection of mosaic virus disease in cassava plants by sunlight-induced fluorescence imaging: A pilot study for proximal sensing[J]. International journal of remote sensing, 2015, 36(11): 2880-2897.
|
13 |
CEN H Y, WENG H Y, YAO J N, et al. Chlorophyll fluorescence imaging uncovers photosynthetic fingerprint of Citrus huanglongbing[J]. Frontiers in plant science, 2017, 8: ID 1509.
|
14 |
彭金龙, 李萌, 褚荣浩, 等. 日光诱导叶绿素荧光反演及其在植被环境胁迫监测中的研究进展[J]. 江苏农业科学, 2021, 49(24): 29-40.
|
|
PENG J L, LI M, CHU R H, et al. Research progress of Sun-induced chlorophyll fluorescence inversion and its application in vegetation environmental stress monitoring[J]. Jiangsu agricultural sciences, 2021, 49(24): 29-40.
|
15 |
赵叶, 竞霞, 黄文江, 等. 日光诱导叶绿素荧光与反射率光谱数据监测小麦条锈病严重度的对比分析[J]. 光谱学与光谱分析, 2019, 39(9): 2739-2745.
|
|
ZHAO Y, JING X, HUANG W J, et al. Comparison of Sun-induced chlorophyll fluorescence and reflectance data on estimating severity of wheat stripe rust[J]. Spectroscopy and spectral analysis, 2019, 39(9): 2739-2745.
|
16 |
闫菊梅, 竞霞, 张腾, 等. 协同冠层SIF和PRI光谱指数的构建及其在小麦条锈病监测中的应用[J]. 西北农林科技大学学报(自然科学版), 2021, 49(12): 113-126.
|
|
YAN J M, JING X, ZHANG T, et al. Establishment of spectral index based on canopy SIF and PRI and its application in monitoring wheat stripe rust[J]. Journal of northwest A & F university (natural science edition), 2021, 49(12): 113-126.
|
17 |
JIA M, ZHU J E, MA C C, et al. Difference and potential of the upward and downward Sun-induced chlorophyll fluorescence on detecting leaf nitrogen concentration in wheat[J]. Remote sensing, 2018, 10(8): ID 1315.
|
18 |
张永江, 黄文江, 王纪华, 等. 基于Fraunhofer线的小麦条锈病荧光遥感探测[J]. 中国农业科学, 2007, 40(1): 78-83.
|
|
ZHANG Y J, HUANG W J, WANG J H, et al. Chlorophyll fluorescence sensing to detect stripe rust in wheat(Triticum aestivum L.) fields based on Fraunhofer lines[J]. Scientia agricultura Sinica, 2007, 40(1): 78-83.
|
19 |
张骁, 闫岩, 王文辉, 等. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
|
|
ZHANG X, YAN Y, WANG W H, et al. Application of continuous wavelet analysis to laboratory reflectance spectra for the prediction of grain amylose content in rice[J]. Acta agronomica Sinica, 2021, 47(8): 1563-1580.
|
20 |
TIAN L, XUE B W, WANG Z Y, et al. Spectroscopic detection of rice leaf blast infection from asymptomatic to mild stages with integrated machine learning and feature selection[J]. Remote sensing of environment, 2021, 257: ID 112350.
|
21 |
隆旺夫. 早稻稻瘟病的防治策略[J]. 湖南农业, 2007(5): ID 15.
|
|
LONG W F. Control strategy of rice blast in early rice[J]. Hunan agriculture, 2007(5): ID 15.
|
22 |
CHENG T, RIVARD B, SÁNCHEZ-AZOFEIFA G A, et al. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation[J]. Remote sensing of environment, 2010, 114(4): 899-910.
|
23 |
CHENG T, RIAÑO D, USTIN S L. Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis[J]. Remote sensing of environment, 2014, 143: 39-53.
|
24 |
CHENG T, RIVARD B, SÁNCHEZ-AZOFEIFA A G, et al. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis[J]. Journal of plant physiology, 2012, 169(12): 1134-1142.
|
25 |
LI X L, XIE C Q, HE Y, et al. Characterizing the moisture content of tea with diffuse reflectance spectroscopy using wavelet transform and multivariate analysis[J]. Sensors, 2012, 12(7): 9847-9861.
|
26 |
单秋甫, 张涛, 李超, 等. 基于Fisher线性判别分析方法的卷烟主流烟气质量预测模型构建[J]. 食品与机械, 2021, 37(2): 78-84, 92.
|
|
SHAN Q F, ZHANG T, LI C, et al. Construction of a prediction model for mainstream cigarette smoke quality based on Fisher linear discriminant analysis method[J]. Food & machinery, 2021, 37(2): 78-84, 92.
|
27 |
CHENG T, RIVARD B, SÁNCHEZ-AZOFEIFA A G, et al. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis[J]. ISPRS journal of photogrammetry and remote sensing, 2014, 87: 28-38.
|
28 |
CHENG T, RIVARD B, SÁNCHEZ-AZOFEIFA A. Spectroscopic determination of leaf water content using continuous wavelet analysis[J]. Remote sensing of environment, 2011, 115(2): 659-670.
|
29 |
RIVARD B, FENG J, GALLIE A, et al. Continuous wavelets for the improved use of spectral libraries and hyperspectral data[J]. Remote sensing of environment, 2008, 112(6): 2850-2862.
|
30 |
方美红, 刘湘南. 小波分析用于水稻叶片氮含量高光谱反演[J]. 应用科学学报, 2010, 28(4): 387-393.
|
|
FANG M H, LIU X N. Estimation of nitrogen content in rice leaves with hyperspectral reflectance measurements using wavelet analysis[J]. Journal of applied sciences, 2010, 28(4): 387-393.
|
31 |
MOHAMMED G H, COLOMBO R, MIDDLETON E M, et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress[J]. Remote sensing of environment, 2019, 231: ID 111177.
|
32 |
TIAN L, WANG Z Y, XUE B W, et al. A disease-specific spectral index tracks Magnaporthe oryzae infection in paddy rice from ground to space[J]. Remote sensing of environment, 2023, 285: ID 113384.
|
33 |
邢梦玉, 郑服丛. 水稻叶片对稻瘟菌侵染反应的超微结构变化[J]. 热带作物学报, 2008, 29(1): 102-105.
|
|
XING M Y, ZHENG F C. Ultra-structural change of the rice leaf infected by Magnaporthe grisea [J]. Chinese journal of tropical crops, 2008, 29(1): 102-105.
|
34 |
易军. 稻瘟病菌对水稻光合特性和产量的影响研究[D]. 绵阳: 西南科技大学, 2015.
|
|
YI J. Study on the effects of Magnaporthe oryzae on photosynthesis characteristics and yield of rice plants[D]. Mianyang: Southwest University of Science and Technology, 2015.
|
35 |
PAO Y C, CHEN T W, MOUALEU-NGANGUE D P, et al. Environmental triggers for photosynthetic protein turnover determine the optimal nitrogen distribution and partitioning in the canopy[J]. Journal of experimental botany, 2019, 70(9): 2419-2434.
|
36 |
ADACHI S, YOSHIKAWA K, YAMANOUCHI U, et al. Fine mapping of carbon assimilation rate 8, a quantitative trait locus for flag leaf nitrogen content, stomatal conductance and photosynthesis in rice[J]. Frontiers in plant science, 2017, 8: ID 60.
|
37 |
朱艳, 田永超, 马吉锋, 等. 小麦叶片叶绿素荧光参数与反射光谱特征的关系[J]. 作物学报, 2007, 33(8): 1286-1292.
|
|
ZHU Y, TIAN Y C, MA J F, et al. Relationship between chlorophyll fluorescence parameters and spectral reflectance characteristics in wheat leaves[J]. Acta agronomica Sinica, 2007, 33(8): 1286-1292.
|