1 |
乔良, 张嘉琳. 数字经济背景下农产品供应链发展趋势分析[J]. 中国储运, 2023(1): 125-126.
|
|
QIAO L, ZHANG J L. Analysis on the development trend of agricultural products supply chain under the background of digital economy[J]. China storage & transport, 2023(1): 125-126.
|
2 |
韩慧健, 韩佳兵, 张锐. 基于模糊认知图的物流需求预测模型研究[J]. 系统工程理论与实践, 2019, 39(6): 1487-1495.
|
|
HAN H J, HAN J B, ZHANG R. Study on logistics demand forecasting model based on fuzzy cognitive map[J]. Systems engineering-theory & practice, 2019, 39(6): 1487-1495.
|
3 |
MONTANARI R. Cold chain tracking: A managerial perspective[J]. Trends in food science & technology, 2008, 19(8): 425-431.
|
4 |
JOSHI R, BANWET D K, SHANKAR R. Consumer link in cold chain: Indian scenario[J]. Food control, 2010, 21(8): 1137-1142.
|
5 |
孔玉寒, 王雪松, 田政. 集聚冷链物流要素畅通冷链循环通道——加快推进南京冷链物流高质量发展的研究与思考[J]. 物流工程与管理, 2022, 44(7): 28-30.
|
|
KONG Y H, WANG X S, TIAN Z. Aggregating cold chain logistics elements, unblocking the cold chain circulation channel: Research and thinking on accelerating the high-quality development of cold chain logistics in Nanjing[J]. Logistics engineering and management, 2022, 44(7): 28-30.
|
6 |
章宗标. 一种基于PCA-BP神经网络的示例优选方法[J]. 计算机工程与应用, 2013, 49(19): 108-111, 172.
|
|
ZHANG Z B. Optimum selection method of audio sample based on PCA and BP Neural Network[J]. Computer engineering and applications, 2013, 49(19): 108-111, 172.
|
7 |
KALAITZIS P, DIJK G, BAOURAKIS G. Euro-mediterranean supply chain developments and trends in trade structures, in the fresh fruit and vegetable sector[C]// Barcelona, Spain: European Association of Agricultural Economists, 2007.
|
8 |
YA B. Study of food cold chain logistics demand forecast based on multiple regression and AW-BP forecasting method on system order parameters[J]. Journal of computational and theoretical nanoscience, 2016, 13(7): 4019-4024.
|
9 |
王晓平, 彭文凯, 卢怀宇, 等. 基于支持向量机模型的北京城镇农产品冷链物流需求预测[J]. 湖北农业科学, 2018, 57(15): 88-94.
|
|
WANG X P, PENG W K, LU H Y, et al. Forecast of cold chain logistics demand for agricultural products in Beijing based on support vector machine model[J]. Hubei agricultural sciences, 2018, 57(15): 88-94.
|
10 |
TREBAR M, LOTRIČ M, FONDA I. Use of RFID temperature monitoring to test and improve fish packing methods in styrofoam boxes[J]. Journal of food engineering, 2015, 159: 66-75.
|
11 |
张喜才, 李海玲. 基于灰色与马尔科夫链模型的京津冀农产品冷链需求预测[J]. 商业经济研究, 2019(15): 109-111.
|
|
ZHANG X C, LI H L. Forecast of cold chain demand of agricultural products in Beijing, Tianjin and Hebei based on grey and Markov chain model[J]. Journal of commercial economics, 2019(15): 109-111.
|
12 |
王晓平, 闫飞. 基于多源信息融合的冷链农产品需求预测模型研究综述[J]. 湖北农业科学, 2018, 57(15): 16-20.
|
|
WANG X P, YAN F. Review on demand forecasting model of cold chain agricultural products based on multi-source information fusion[J]. Hubei agricultural sciences, 2018, 57(15): 16-20.
|
13 |
刘艳利, 伍大清. 基于改进BP神经网络的水产品冷链物流需求预测研究——以浙江省为例[J]. 中国渔业经济, 2020, 38(5): 93-101.
|
|
LIU Y L, WU D Q. Research on cold chain logistics demand prediction of aquatic products based on improved BP Neural Network: A case study of Zhejiang province[J]. Chinese fisheries economics, 2020, 38(5): 93-101.
|
14 |
陈谦, 杨涵, 王宝刚, 等. 基于GRU神经网络模型的冷链运输温度时序预测[J]. 农业大数据学报, 2022, 4(1): 82-88.
|
|
CHEN Q, YANG H, WANG B G, et al. Time series prediction of cold-chain transportation temperature based on GRU neural network model[J]. Journal of agricultural big data, 2022, 4(1): 82-88.
|
15 |
TOMLIN B. Capacity investments in supply chains: Sharing the gain rather than sharing the pain[J]. Manufacturing & service operations management, 2003, 5(4): 317-333.
|
16 |
AMORIM P, ALMADA-LOBO B. The impact of food perishability issues in the vehicle routing problem[J]. Computers & industrial engineering, 2014, 67: 223-233.
|
17 |
ABADA P L, AGGARWAL V. Incorporating transport cost in the lot size and pricing decisions with downward sloping demand[J]. International journal of production economics, 2005, 95(3): 297-305.
|
18 |
WANG Z J, BESSLER D A. The homogeneity restriction and forecasting performance of VAR-type demand systems: An empirical examination of US meat consumption[J]. Journal of forecasting, 2002, 21(3): 193-206.
|
19 |
马佳成, 王晓霞, 杨迪. 基于Attention机制的TCN-LSTM非侵入式负荷分解[J]. 电力信息与通信技术, 2023, 21(8): 43-51.
|
|
MA J C, WANG X X, YANG D. Non-intrusive load decomposition based on TCN-LSTM model with attention mechanism[J]. Electric power information and communication technology, 2023, 21(8): 43-51.
|
20 |
NARUEI I, KEYNIA F. Wild horse optimizer: A new meta-heuristic algorithm for solving engineering optimization problems[J]. Engineering with computers, 2022, 38(4): 3025-3056.
|
21 |
吴家葆, 曾国辉, 张振华, 等. 基于K-means分层聚类的TCN-GRU和LSTM动态组合光伏短期功率预测[J]. 可再生能源, 2023, 41(8): 1015-1022.
|
|
WU J B, ZENG G H, ZHANG Z H, et al. Dynamic combination of TCN-GRU and LSTM photovoltaic short-term power prediction based on K-means hierarchical clustering[J]. Renewable energy resources, 2023, 41(8): 1015-1022.
|
22 |
郭明德, 李红. 基于PCA-RBF神经网络模型的果蔬冷链物流需求预测[J]. 江西农业学报, 2018, 30(10): 137-141.
|
|
GUO M D, LI H. Prediction on cold-chain logistics demand of fruits and vegetables based on PCA-RBF neural network model[J]. Acta agriculturae Jiangxi, 2018, 30(10): 137-141.
|
23 |
朱闯, 孙庆峰. 基于MIV-GA-BP模型的农产品冷链物流需求预测[J]. 物流科技, 2023, 46(9): 134-137.
|
|
ZHU C, SUN Q F. Demand forecast of agricultural products cold chain logistics based on MIV-GA-BP model[J]. Logistics sci-tech, 2023, 46(9): 134-137.
|
24 |
刘发国. 南京都市圈农产品冷链物流需求预测及网络布局研究[D]. 太原: 山西财经大学, 2023.
|
|
LIU F G. Research on demand forecast and network layout of cold chain logistics of agricultural products in Nanjing metropolitan area[D]. Taiyuan: Shanxi University of Finance and Economics, 2023.
|