1 |
段九菊, 宋卓琴, 贾民隆, 等. 大同市黄花菜产业发展历程、现状及对策[J]. 中国种业, 2021(1): 17-19.
|
|
DUAN J J, SONG Z Q, JIA M L, et al. Development course, present situation and countermeasures of daylily industry in Datong city[J]. China seed industry, 2021(1): 17-19.
|
2 |
田宇. 基于多边形建模和动画关键帧技术的小麦生长三维可视化[D]. 太谷: 山西农业大学, 2020.
|
|
TIAN Y. 3D visualization of wheat growth based on polygonal modeling and animation key frame technique[D]. Taigu: Shanxi Agricultural University, 2020.
|
3 |
王勇健. 基于节单位的玉米形态结构三维数字化可视化研究[D]. 南京: 南京农业大学, 2020.
|
|
WANG Y J. Research on 3D digitization and visualization of maize morphological architecture based on phytomer[D]. Nanjing: Nanjing Agricultural University, 2020.
|
4 |
李玉超. 基于多视角图像的苗期玉米植株三维重建和表型测量研究[D]. 保定: 河北农业大学, 2022.
|
|
LI Y C. Three-dimensional reconstruction and phenotype measurement of maize plants at seedling stage based on multi-view images[D]. Baoding: Hebei Agricultural University, 2022.
|
5 |
LIU Q, XU S, XIAO J, WANG Y. Sharp Feature-preserving 3D mesh reconstruction from point clouds based on primitive detection[J]. Remote Sensing, 2023, 15(12): ID 3155.
|
6 |
陆健强, 兰玉彬, 毋志云, 等. 植物三维建模ICP点云配准优化[J]. 农业工程学报, 2022, 38(2): 183-191.
|
|
LU J Q, LAN Y B, WU Z Y, et al. Optimization of ICP point cloud registration in plants 3D modeling[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(2): 183-191.
|
7 |
徐浩, 张小虎, 邱小雷, 等. 格网化小麦生长模拟预测系统设计与实现[J]. 农业工程学报, 2020, 36(15): 167-172.
|
|
XU H, ZHANG X H, QIU X L, et al. Design and implementation of gridded simulation and prediction system for wheat growth[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(15): 167-172.
|
8 |
李晓, 吴亚鹏, 贺利, 等. 基于近地高光谱遥感的小麦叶片生长参数动态模型研究[J]. 河南农业大学学报, 2022, 56(2): 199-208, 227.
|
|
LI X, WU Y P, HE L, et al. Dynamic model for wheat leaf growth parameters based on in situ hyperspectral remote sensing[J]. Journal of Henan agricultural university, 2022, 56(2): 199-208, 227.
|
9 |
李书钦, 诸叶平, 刘海龙, 等. 基于有效积温的冬小麦返青后植株三维形态模拟[J]. 中国农业科学, 2017, 50(9): 1594-1605.
|
|
LI S Q, ZHU Y P, LIU H L, et al. 3D shape simulation of winter wheat after turning green stage based on effective accumulated temperature[J]. Scientia agricultura Sinica, 2017, 50(9): 1594-1605.
|
10 |
杨乐, 彭军, 龙兰, 等. 基于三维动态生长模型的水稻根系模拟[J]. 湖南农业大学学报(自然科学版), 2022, 48(5): 613-618.
|
|
YANG L, PENG J, LONG L, et al. Rice root system simulation research based on three dimensional dynamic growth model[J]. Journal of Hunan agricultural university (natural sciences), 2022, 48(5): 613-618.
|
11 |
SOUALIOU S, WANG Z W, SUN W W, et al. Functional-structural plant models mission in advancing crop science: Opportunities and prospects[J]. Frontiers in plant science, 2021, 12: ID 747142.
|
12 |
PAO Y C, KAHLEN K, CHEN T W, et al. How does structure matter? Comparison of canopy photosynthesis using one- and three-dimensional light models:A case study using greenhouse cucumber canopies[J]. In silico plants, 2021, 3(2): ID diab031.
|
13 |
ZHU X G, WANG Y, ORT D R, et al. E-photosynthesis: A comprehensive dynamic mechanistic model of C3 photosynthesis: From light capture to sucrose synthesis[J]. Plant, cell & environment, 2013, 36(9): 1711-1727.
|
14 |
SONNEWALD U, FERNIE A R. Next-generation strategies for understanding and influencing source-sink relations in crop plants[J]. Current opinion in plant biology, 2018, 43: 63-70.
|
15 |
LACOINTE A, MINCHIN P E H. Amechanistic model to predict distribution of carbon among multiple sinks[M]// LIESCHE J, Ed. Phloem. New York, USA: Springer New York, 2019: 371-386.
|
16 |
SONG Q F, SRINIVASAN V, LONG S P, et al. Decomposition analysis on soybean productivity increase under elevated CO2 using 3-D canopy model reveals synergestic effects of CO2 and light in photosynthesis[J]. Annals of botany, 2020, 126(4): 601-614.
|
17 |
徐利锋. 整合水稻形态,生理及数量遗传因子的功能与结构模型构建[D]. 杭州: 浙江大学, 2011.
|
|
XU L F. A functional-structural model of rice, integrating morphology, physiology and quantitative genetics[D]. Hangzhou: Zhejiang University, 2011.
|
18 |
REYES F, PALLAS B, PRADAL C, et al. MuSCA: A multi-scale source-sink carbon allocation model to explore carbon allocation in plants. An application to static apple tree structures[J]. Annals of botany, 2020, 126(4): 571-585.
|
19 |
AUZMENDI I, HANAN J S. Investigating tree and fruit growth through functional-structural modelling: Implications of carbon autonomy at different scales[J]. Annals of botany, 2020, 126(4): 775-788.
|
20 |
李进, 韩志平, 李艳清, 等. 大同黄花菜生物学特征及其高产栽培技术[J]. 园艺与种苗, 2019, 39(5): 5-10.
|
|
LI J, HAN Z P, LI Y Q, et al. Review on biological characteristics and higher production culture technique of Datong daylily[J]. Horticulture & seed, 2019, 39(5): 5-10.
|
21 |
耿晓东, 王菊秋, 周英, 等. 不同光照强度下3种萱草属植物的光合特性与叶绿素荧光特性[J]. 分子植物育种, 2023, 21(4): 1322-1329.
|
|
GENG X D, WANG J Q, ZHOU Y, et al. Characteristics of photosynthetic and chlorophyll fluorescence of three Hemerocallis species under different light intensities[J]. Molecular plant breeding, 2023, 21(4): 1322-1329.
|
22 |
KNIEMEYER O. Design and Implementation of a graph grammar based language for functional-structural plant modelling[D]. Cottbus: Brandenburgische Technische Universität Cottbus, 2008.
|
23 |
HEMMERLING R, KNIEMEYER O, LANWERT D, et al. The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition[J]. Functional plant biology, 2008, 35(10): 739-750.
|
24 |
ZHANG Y, HENKE M, LI Y M, et al. High resolution 3D simulation of light climate and thermal performance of a solar greenhouse model under tomato canopy structure[J]. Renewable energy, 2020, 160: 730-745.
|
25 |
AHAMED M S, GUO H, TANINO K. Cloud cover-based models for estimation of global solar radiation: A review and case study[J]. International journal of green energy, 2022, 19(2): 175-189.
|
26 |
HENKE M, KURTH W, BUCK-SORLIN G H. FSPM-P:Towards a general functional-structural plant model for robust and comprehensive model development[J]. Frontiers of computer science, 2016, 10(6): 1103-1117.
|
27 |
YIN X Y, GOUDRIAAN J, LANTINGA E A, et al. A flexible sigmoid function of determinate growth[J]. Annals of botany, 2003, 91(3): 361-371.
|
28 |
YIN X Y, VAN LAAR H H. Crop systems dynamics an ecophysiological simulation model for genotype-by-environment interactions[M]. Wageningen, the Netherlands: Wageningen Academic Publishers, 2005.
|
29 |
XU L F, HENKE M, ZHU J, et al. A rule-based functional-structural model of rice considering source and sink functions[C]// Proceedings of the 2009 Plant Growth Modeling, Simulation, Visualization, and Applications. New York, USA: ACM, 2009: 245-252.
|
30 |
GOUDRIAAN J, VAN LAAR H H. Modelling potential crop growth processes: Textbook with exercises[M]. Dordrecht: Kluwer Academic Publishers, 1994.
|
31 |
FARQUHAR G D, CAEMMERER S, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90.
|
32 |
BALL J T, WOODROW I E, BERRY J A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions[M]// Progress in photosynthesis research. Dordrecht: Springer Netherlands, 1987: 221-224.
|