1 |
BAJGUZ A, TRETYN A. The chemical characteristic and distribution of brassinosteroids in plants[J]. Phytochemistry, 2003, 62(7): 1027-1046.
|
2 |
WANG X Y, XIONG C F, YE T T, et al. Online polymer monolith microextraction with in situ derivatization for sensitive detection of endogenous brassinosteroids by LC-MS[J]. Microchemical journal, 2020, 158: ID 105061.
|
3 |
CLOUSE S D, SASSE J M. BRASSINOSTEROIDS: Essentialregulators of plant growth and development[J]. Annual review of plant physiology and plant molecular biology, 1998, 49: 427-451.
|
4 |
TAKATSUTO S. Brassinosteroids: Distribution in plants, bioassays and microanalysts by gas chromatography: Mass spectrometry[J]. Journal of chromatography A, 1994, 658(1): 3-15.
|
5 |
LUO X T, CAI B D, YU L, et al. Sensitive determination of brassinosteroids by solid phase boronate affinity labeling coupled with liquid chromatography-tandem mass spectrometry[J]. Journal of chromatography A, 2018, 1546: 10-17.
|
6 |
PRADKO A G, LITVINOVSKAYA R P, SAUCHUK A L, et al. A new ELISA for quantification of brassinosteroids in plants[J]. Steroids, 2015, 97: 78-86.
|
7 |
CAO L D, ZHANG H, ZHANG H J, et al. Determination of propionyl brassinolide and its impurities by high-performance liquid chromatography with evaporative light scattering detection[J]. Molecules, 2018, 23(3): ID 531.
|
8 |
CHENG Y Y, FENG X Z, ZHAN T, et al. A facile indole probe for ultrasensitive immunosensor fabrication toward C-reactive protein sensing[J]. Talanta, 2023, 262: ID 124696.
|
9 |
BAKHSHANDEH F, SAHA S, SEN P, et al. A universal bacterial sensor created by integrating a light modulating aptamer complex with photoelectrochemical signal readout[J]. Biosensors and bioelectronics, 2023, 235: ID 115359.
|
10 |
LIU D D, LI M J, LI H J, et al. Core-shell Au@Cu2O-graphene-polydopamine interdigitated microelectrode array sensor for in situ determination of salicylic acid in cucumber leaves[J]. Sensors and actuators B: chemical, 2021, 341: ID 130027.
|
11 |
ALI A E, FOUAD O A, MOHAMED G G. Theoretical and experimental approaches to the preparation, characterization and application of a newly synthesized mesoporous Zn-MOF as a selective ionophore for Ni(II) ion in carbon paste electrode matrix[J]. Journal of molecular structure, 2023, 1285: ID 135475.
|
12 |
JIANG H M, WANG Z G, YANG Q, et al. A novel MnO2/Ti3C2T x MXene nanocomposite as high performance electrode materials for flexible supercapacitors[J]. Electrochimica acta, 2018, 290: 695-703.
|
13 |
WANG W D, JIANG D M, CHEN X, et al. A sandwich-like nano-micro LDH-MXene-LDH for high-performance supercapacitors[J]. Applied surface science, 2020, 515: ID 145982.
|
14 |
TU X L, GAO F, MA X, et al. Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide[J]. Journal of hazardous materials, 2020, 396: ID 122776.
|
15 |
JIANG H M, WANG Z G, YANG Q, et al. Ultrathin Ti3C2T_x (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting[J]. Nano-micro letters, 2019, 11(1): 1-14.
|
16 |
XIANG Y C, FANG L A, WU F, et al. 3D crinkled alk-Ti3C2 MXene based flexible piezoresistive sensors with ultra-high sensitivity and ultra-wide pressure range[J]. Advanced materials technologies, 2021, 6(6): ID 2001157.
|
17 |
LI M H, FANG L, ZHOU H, et al. Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor[J]. Applied surface science, 2019, 495: ID 143554.
|
18 |
ZHU Y C, RAJOUÂ K, LE VOT S, et al. Modifications of MXene layers for supercapacitors[J]. Nano energy, 2020, 73: ID 104734.
|
19 |
WAN B L, LIU N N, ZHANG Z, et al. Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels[J]. Carbohydrate polymers, 2023, 314: ID 120929.
|
20 |
DENG Z M, LI L L, TANG P P, et al. Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications[J]. ACS nano, 2022, 16(10): 16976-16986.
|
21 |
LEE G S, YUN T, KIM H, et al. Mussel inspired highly aligned Ti(3)C(2)T(x) MXene film with synergistic enhancement of mechanical strength and ambient stability[J]. ACS nano, 2020, 14(9): 11722-11732.
|
22 |
LIU C J, YANG W, MIN X, et al. An enzyme-free electrochemical immunosensor based on quaternary metallic/nonmetallic PdPtBP alloy mesoporous nanoparticles/MXene and conductive CuCl2 nanowires for ultrasensitive assay of kidney injury molecule-1[J]. Sensors and actuators B: chemical, 2021, 334: ID 129585.
|
23 |
YAN B B, ZHOU M, YU Y Y, et al. Orderly Self-Stacking a High-Stability coating of MXene@Polydopamine hybrid onto textiles for multifunctional personal thermal management[J]. Composites part A: Applied science and manufacturing, 2022, 160: ID 107038.
|
24 |
HE X L, WU J X, CHEN Y, et al. A trace amount of MXene@PDA nanosheets for low-temperature zinc phosphating coatings with superb corrosion resistance[J]. Applied surface science, 2022, 603: ID 154455.
|
25 |
CHEN R H, CHENG Y Y, WANG P, et al. Facile synthesis of a sandwiched Ti3C2T x MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH2)2 complexing solutions[J]. Chemical engineering journal, 2021, 421: ID 129682.
|
26 |
PARK T H, YU S, KOO M, et al. Shape-adaptable 2D titanium carbide (MXene) heater[J]. ACS nano, 2019, 13(6): 6835-6844.
|
27 |
TIAN Y Q, QIU W J, XIE Y H, et al. Melatonin as an accelerating agent for phosphate chemical conversion coatings on mild steel with enhanced corrosion resistance[J]. Journal of the electrochemical society, 2020, 167(10): ID 101505.
|
28 |
DUAN Y Y, WANG N, HUANG Z X, et al. Electrochemical endotoxin aptasensor based on a metal-organic framework labeled analytical platform[J]. Materials science and engineering: C, 2020, 108: ID 110501.
|
29 |
ZHANG Z M, ZHANG Y, TAN W, et al. Preparation of styrene-co-4-vinylpyridine magnetic polymer beads by microwave irradiation for analysis of trace 24-epibrassinolide in plant samples using high performance liquid chromatography[J]. Journal of chromatography A, 2010, 1217(42): 6455-6461.
|
30 |
PAN J L, HU Y L, LIANG T A, et al. Preparation of solid-phase microextraction fibers by in-mold coating strategy for derivatization analysis of 24-epibrassinolide in pollen samples[J]. Journal of chromatography A, 2012, 1262: 49-55.
|
31 |
SWACZYNOVÁ J, NOVÁK O, HAUSEROVÁ E, et al. New techniques for the estimation of naturally occurring brassinosteroids[J]. Journal of plant growth regulation, 2007, 26(1): 1-14.
|
32 |
TARKOWSKÁ D, NOVÁK O, OKLESTKOVA J, et al. The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC-ESI-MS/MS[J]. Analytical and bioanalytical chemistry, 2016, 408(24): 6799-6812.
|
33 |
LIU X, ZHONG Y, LI W L, et al. Development and comprehensive SPE-UHPLC-MS/MS analysis optimization, comparison, and evaluation of 2, 4-epibrassinolide in different plant tissues[J]. Molecules, 2022, 27(3): ID 831.
|
34 |
WANG Y K, BAI J F, WANG P, et al. Comparative transcriptome analysis identifies genes involved in the regulation of the pollen cytoskeleton in a genic male sterile wheat line[J]. Plant growth regulation, 2018, 86(1): 133-147.
|
35 |
JANECZKO A, BIESAGA-KOŚCIELNIAK J, OKLEŠT'KOVÁ J, et al. Role of 24-epibrassinolide in wheat production: Physiological effects and uptake[J]. Journal of agronomy and crop science, 2010, 196(4): 311-321.
|
36 |
AN X L, TAN T Y, ZHANG X Y, et al. Effects of light intensity on endogenous hormones and key enzyme activities of anthocyanin synthesis in blueberry leaves[J]. Horticulturae, 2023, 9(6): ID 618.
|
37 |
JANECZKO A, SWACZYNOVÁ J. Endogenous brassinosteroids in wheat treated with 24-epibrassinolide[J]. Biologia plantarum, 2010, 54(3): 477-482.
|
38 |
ANURADHA S, RAO S SRAM. Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity[J]. Plant growth regulation, 2003, 40(1): 29-32.
|
39 |
LU X, LIU R, LIU H, et al. Experimental evidence from Suaeda glauca explains why the species is not naturally distributed in non-saline soils [J]. Science of the total environment, 2022, 817: ID 153028.
|
40 |
WANG P, LI X Y, TIAN L, et al. Low salinity promotes the growth of broccoli sprouts by regulating hormonal homeostasis and photosynthesis[J]. Horticulture, environment, and biotechnology, 2019, 60(1): 19-30.
|
41 |
AHMAD H, HAYAT S, ALI M, et al. Regulation of Growth and Physiological traits of Cucumber (Cucumis sativus L.) through various levels of 28-Homobrassinolide under salt stress conditions[J]. Canadian journal of plant science, 2017: CJPS-2016.
|