1 |
陈颖, 吴焕萍, 谢能付, 等. 基于深度学习的干旱预测方法研究进展[J/OL]. 中国农业资源与区划. ( 2024-03-26) [ 2024-10-18].
|
|
CHEN Y, WU H P, XIE N F, et al. REsearch progress on drought prediction methods based on deep learning[J/OL]. China Agricultural Resources and Regional Planning. ( 2024-03-26) [ 2024-10-18].
|
2 |
LIU C H. Drought level prediction with deep learning[M]// Communications in computer and information science. Singapore: Springer Nature Singapore, 2021: 53- 65.
|
3 |
PARK E, JO H W, LEE W K, et al. Development of earth observational diagnostic drought prediction model for regional error calibration: A case study on agricultural drought in Kyrgyzstan[J]. GIScience & remote sensing, 2022, 59( 1): 36- 53.
|
4 |
SARDAR V S, M Y K, CHAUDHARI S S, et al. Convolution neural network-based agriculture drought prediction using satellite images[C]// 2021 IEEE Mysore Sub Section International Conference (MysuruCon). Piscataway, New Jersey, USA: IEEE, 2021: 601- 607.
|
5 |
KAFY AAL, BAKSHI A, SAHA M, et al. Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms[J]. Science of the total environment, 2023, 867: ID 161394.
|
6 |
AGHELPOUR P, MOHAMMADI B, MEHDIZADEH S, et al. A novel hybrid dragonfly optimization algorithm for agricultural drought prediction[J]. Stochastic environmental research and risk assessment, 2021, 35( 12): 2459- 2477.
|
7 |
XU Y, ZHANG X, HAO Z C, et al. Characterization of agricultural drought propagation over China based on bivariate probabilistic quantification[J]. Journal of hydrology, 2021, 598: ID 126194.
|
8 |
HUANG S Z, WANG L, WANG H, et al. Spatio-temporal characteristics of drought structure across China using an integrated drought index[J]. Agricultural water management, 2019, 218: 182- 192.
|
9 |
YANG M X, MOU Y L, MENG Y R, et al. Modeling the effects of precipitation and temperature patterns on agricultural drought in China from 1949 to 2015[J]. Science of the total environment, 2020, 711: ID 135139.
|
10 |
韩东, 王鹏新, 张悦, 等. 农业干旱卫星遥感监测与预测研究进展[J]. 智慧农业(中英文), 2021, 3( 2): 1- 14.
|
|
HAN D, WANG P X, ZHANG Y, et al. Progress of agricultural drought monitoring and forecasting using satellite remote sensing[J]. Smart agriculture, 2021, 3( 2): 1- 14.
|
11 |
周洪奎, 武建军, 李小涵, 等. 基于同化数据的标准化土壤湿度指数监测农业干旱的适宜性研究[J]. 生态学报, 2019, 39( 6): 2191- 2202.
|
|
ZHOU H K, WU J J, LI X H, et al. Suitability of assimilated data-based standardized soil moisture index for agricultural drought monitoring[J]. Acta ecologica sinica, 2019, 39( 6): 2191- 2202.
|
12 |
ZHANG Y, HAO Z C, FENG S F, et al. Agricultural drought prediction in China based on drought propagation and large-scale drivers[J]. Agricultural water management, 2021, 255: ID 107028.
|
13 |
MO K C, LYON B. Global meteorological drought prediction using the North American multi-model ensemble[J]. Journal of hydrometeorology, 2015, 16( 3): 1409- 1424.
|
14 |
黄睿茜, 赵俊芳, 霍治国, 等. 深度学习技术在农业干旱监测预测及风险评估中的应用[J]. 中国农业气象, 2023, 44( 10): 943- 952.
|
|
HUANG R X, ZHAO J F, HUO Z G, et al. Application of deep learning technology in monitoring, forecasting and risk assessment of agricultural drought[J]. Chinese journal of agrometeorology, 2023, 44( 10): 943- 952.
|
15 |
TIAN Y, XU Y P, WANG G Q. Agricultural drought prediction using climate indices based on support vector regression in Xiangjiang River basin[J]. Science of the total environment, 2018, 622: 710- 720.
|
16 |
FUNG K F, HUANG Y F, KOO C H, et al. Improved SVR machine learning models for agricultural drought prediction at downstream of Langat River Basin, Malaysia[J]. Journal of water and climate change, 2020, 11( 4): 1383- 1398.
|
17 |
KADAM C M, BHOSLE U V, HOLAMBE R S. Deep learning-driven regional drought assessment: An optimized perspective[J]. Earth science informatics, 2024, 17( 2): 1523- 1537.
|
18 |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE transactions on neural networks, 2009, 20( 1): 61- 80.
|
19 |
BHATTI U A, TANG H, WU G L, et al. Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence[J]. International journal of intelligent systems, 2023, 2023( 1): ID 8342104.
|
20 |
LIU J P, LEI X J, ZHANG Y C, et al. The prediction of molecular toxicity based on BiGRU and GraphSAGE[J]. Computers in biology and medicine, 2023, 153: ID 106524.
|
21 |
FAN J, BAI J W, LI Z Y, et al. A GNN-RNN approach for harnessing geospatial and temporal information: Application to crop yield prediction[J]. Proceedings of the AAAI conference on artificial intelligence, 2022, 36( 11): 11873- 11881.
|
22 |
YANG J, SUN J, REN Y, et al. GACP: Graph neural networks with ARMA filters and a parallel CNN for hyperspectral image classification[J]. International journal of digital earth, 2023, 16( 1): 1770- 1800.
|
23 |
YU J X, MA T H, JIA L, et al. Multivariate spatio-temporal modeling of drought prediction using graph neural network[J]. Journal of hydroinformatics, 2024, 26( 1): 107- 124.
|
24 |
BALTI H, ABBES ABEN, FARAH I R. A Bi-GRU-based encoder-decoder framework for multivariate time series forecasting[J]. Soft computing, 2024, 28( 9): 6775- 6786.
|
25 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. arXiv: 1706. 03762v 7, 2023.
|
26 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. arXiv: 1609. 02907v 4, 2016.
|
27 |
SANKALP S, RAO U M, PATRA K C, et al. Modeling gated recurrent unit (GRU) neural network in forecasting surface soil wetness for drought districts of Odisha[J]. Developments in environmental science, 2023, 14: 217- 229.
|
28 |
SALAS-MARTÍNEZ F, MÁRQUEZ-GRAJALES A, VALDÉS-RODRÍGUEZ O A, et al. Prediction of agricultural drought behavior using the long short-term memory network (LSTM) in the central area of the Gulf of Mexico[J]. Theoretical and applied climatology, 2024, 155( 8): 7887- 7907.
|
29 |
AMANAMBU A C, MOSSA J, CHEN Y H. Hydrological drought forecasting using a deep transformer model[J]. Water, 2022, 14( 22): ID 3611.
|