1 |
王辉, 陈睿鹏, 余志雪, 等. 基于卟啉和半导体单壁碳纳米管的场效应气体传感器检测草莓恶疫霉[J]. 智慧农业(中英文), 2022, 4(3): 143-151.
|
|
WANG H, CHEN R P, YU Z X, et al. Porphyrin and semiconducting single wall carbon nanotubes based semiconductor field effect gas sensor for determination of phytophthora strawberries[J]. Smart agriculture, 2022, 4(3): 143-151.
|
2 |
LI Y, WANG J C, WU H R, et al. Detection of powdery mildew on strawberry leaves based on DAC-YOLOv4 model[J]. Computers and electronics in agriculture, 2022, 202: ID 107418.
|
3 |
LI G Q, JIAO L, CHEN P, et al. Spatial convolutional self-attention-based transformer module for strawberry disease identification under complex background[J]. Computers and electronics in agriculture, 2023, 212: ID 108121.
|
4 |
XIE C Q, HE Y. Spectrum and image texture features analysis for early blight disease detection on eggplant leaves[J]. Sensors, 2016, 16(5): ID 676.
|
5 |
DWIVEDI P, KUMAR S, VIJH S, et al. Study of machine learning techniques for plant disease recognition in agriculture[C]// 2021 11th International Conference on Cloud Computing, Data Science & Amp; Engineering (Confluence). Piscataway, New Jersey, USA: IEEE, 2021: 752-756.
|
6 |
KHAN M A, AKRAM T, SHARIF M, et al. An automated system for cucumber leaf diseased spot detection and classification using improved saliency method and deep features selection[J]. Multimedia tools and applications, 2020, 79(25): 18627-18656.
|
7 |
杜甜甜, 南新元, 黄家興, 等. 改进RegNet识别多种农作物病害受害程度[J]. 农业工程学报, 2022, 38(15): 150-158.
|
|
DU T T, NAN X Y, HUANG J X, et al. Identifying the damage degree of various crop diseases using an improved RegNet[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(15): 150-158.
|
8 |
胡晓波, 许桃胜, 黄伟, 等. 交互式双分支特征融合的草莓病害程度快速诊断方法[J]. 农业机械学报, 2023, 54(11): 225-235.
|
|
HU X B, XU T S, HUANG W, et al. Interactive bilateral feature fusion network for real-time strawberry disease diagnosis[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(11): 225-235.
|
9 |
马盼, 杨子恒, 万虎, 等. 基于YOLOv8网络的棉蚜图像识别算法及软件系统设计[J]. 智能化农业装备学报(中英文), 2023(3): 42-49.
|
|
MA P, YANG Z H, WAN H, et al. A new cotton aphid image recognition algorithm and software based on YOLOv8[J]. Journal of intelligent agricultural mechanization, 2023(3): 42-49.
|
10 |
NGUYEN H T, TRAN T D, NGUYEN T T, et al. Strawberry disease identification with vision transformer-based models[J]. Multimedia tools and applications, 2024, 83(29): 73101-73126.
|
11 |
WANG J P, LI Z Y, GAO G H, et al. BerryNet-lite: A lightweight convolutional neural network for strawberry disease identification[J]. Agriculture, 2024, 14(5): ID 665.
|
12 |
MOHANTY S P, HUGHES D P, SALATHÉ M. Using deep learning for image-based plant disease detection[J]. Frontiers in plant science, 2016, 7: ID 1419.
|
13 |
WANG J D, LAN C L, LIU C, et al. Generalizing to unseen domains: A survey on domain generalization[J]. IEEE transactions on knowledge and data engineering, 2023, 35(8): 8052-8072.
|
14 |
GILLES BLANCHARD G L, CLAYTON SCOTT. Generalizing from several related classification tasks to a new unlabeled sample[C]// Advances in neural information processing systems 24: 25th Annual Conference on Neural Information Processing Systems 2011. San Francisco, USA: Curran Associates Inc, 2011.
|
15 |
THOMAS GRUBINGER A B, HOLGER SCHONER, THOMAS NATSCHLAGER, HESKESTOM. Domain generalization based on transfer component analysis[C]// International Work-Conference on Artificial Neural Networks. Cham, Germany: Springer, 2015: 325-334.
|
16 |
TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: Maximizing for domain invariance[EB/OL]. arXiv: 1412.3474, 2014.
|
17 |
GANG HUA H J G. Deep CORAL: Correlation Alignment forDeep Domain Adaptation[C]// European Conference on Computer Vision. Cham, Germany: Springer, 2016: 443-450.
|
18 |
ULYANOV D, VEDALDI A, LEMPITSKY V S. Instance normalization: The missing ingredient for fast stylization[EB/OL]. arXiv: 1607.08022, 2017.
|
19 |
PAN X G, LUO P, SHI J P, et al. Two at once: Enhancing learning and generalization capacities via IBN-net[C]// Computer Vision-ECCV 2018. Cham, Germany: Springer, 2018: 484-500.
|
20 |
PAN X G, ZHAN X H, SHI J P, et al. Switchable whitening for deep representation learning[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 1863-1871.
|
21 |
CHOI S, JUNG S, YUN H, et al. RobustNet: Improving domain generalization in urban-scene segmentation via instance selective whitening[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 11575-11585.
|
22 |
JIN X, LAN C L, ZENG W J, et al. Style normalization and restitution for domain generalization and adaptation[J]. IEEE transactions on multimedia, 2022, 24: 3636-3651.
|
23 |
YIJUN LI C F, JIMEI YANG, ZHAOWEN WANG, XIN LU, MING HSUAN YANG. Universal style transfer via feature transforms[C]// Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017. San Francisco, USA: Curran Associates Inc, 2017.
|
24 |
HUANG L, ZHOU Y, ZHU F, et al. Iterative normalization: Beyond standardization towards efficient whitening[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 4869-4878.
|
25 |
AFZAAL U, BHATTARAI B, PANDEYA Y R, et al. An instance segmentation model for strawberry diseases based on mask R-CNN[J]. Sensors, 2021, 21(19): ID 6565.
|
26 |
BELGHAZI M I, BARATIN A, RAJESHWAR S, et al. Mutual information neural estimation[C]// Proceedings of the 35th International Conference on Machine Learning. New York, USA: PMLR. 2018: 531-540.
|
27 |
DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2009: 248-255.
|