1 |
刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18.
|
|
LIU C L, LIN H Z, LI Y M, et al. Analysis on status and development trend of intelligent control technology for agricultural equipment[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(1): 1-18.
|
2 |
姬江涛, 王启洲, 张玉成, 等. 无人驾驶农机装备的模糊PI-LQR转向控制算法[J]. 河南科技大学学报(自然科学版), 2024, 45(3): 9-16, 115, 4.
|
|
JI J T, WANG Q Z, ZHANG Y C, et al. Fuzzy PI-LQR steering control algorithm for unmanned agricultural equipment[J]. Journal of Henan University of science and technology (natural science), 2024, 45(3): 9-16, 115, 4.
|
3 |
XIE B B, LIU J Z, HE M, et al. Research progress on Autonomous Navigation Technology of Agricultural Robot[C]// 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Jiaxing, China: IEEE, 2021: 891-898.
|
4 |
ROSHANIANFARD A, NOGUCHI N, OKAMOTO H, et al. A review of autonomous agricultural vehicles (The experience of Hokkaido University)[J]. Journal of terramechanics, 2020, 91: 155-183.
|
5 |
陈建, 王艺霏. 无人驾驶拖拉机路径跟踪控制方法综述[J]. 农机化研究, 2024, 46(8): 1-7.
|
|
CHEN J, WANG Y F. Overview of path tracking control methods for unmanned tractors[J]. Journal of agricultural mechanization research, 2024, 46(8): 1-7.
|
6 |
LI L, LI J, ZHANG S Y. Review article: State-of-the-art trajectory tracking of autonomous vehicles[J]. Mechanical Sciences, 2021, 12(1): 419-432.
|
7 |
ZHA Y F, DENG J X, QIU Y Y, et al. A survey of intelligent driving vehicle trajectory tracking based on vehicle dynamics[J]. SAE International journal of vehicle dynamics, stability, NVH, 7(2): 221-248.
|
8 |
王鑫, 凌铭, 饶启鹏, 等. 基于改进Stanley算法的无人车路径跟踪融合算法研究[J]. 汽车技术, 2022(7): 25-31.
|
|
WANG X, LING M, RAO Q P, et al. Research on fusion algorithm of unmanned vehicle path tracking based on improved Stanley algorithm[J]. Automobile technology, 2022(7): 25-31.
|
9 |
WANG L, ZHAI Z Q, ZHU Z X, et al. Path tracking control of an autonomous tractor using improved Stanley controller optimized with multiple-population genetic algorithm[J]. Actuators, 2022, 11(1): ID 22.
|
10 |
SUN Y, CUI B B, JI F, et al. The full-field path tracking of agricultural machinery based on PSO-enhanced fuzzy Stanley model[J]. Applied sciences, 2022, 12(15): ID 7683.
|
11 |
BIJAY R, AMARENDRA M, ASIM D. Steer guidance of autonomous agricultural robot based on pure pursuit algorithm and LiDAR based vector field histogram[J]. Journal of applied science and engineering, 2023, 26(10): 1363-1372.
|
12 |
YANG Y, LI Y K, WEN X, et al. An optimal goal point determination algorithm for automatic navigation of agricultural machinery: Improving the tracking accuracy of the pure pursuit algorithm[J]. Computers and electronics in agriculture, 2022, 194: ID 106760.
|
13 |
LIU J, YANG Z H, HUANG Z J, et al. Simulation performance evaluation of pure pursuit, Stanley, LQR, MPC controller for autonomous vehicles[C]// 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR). Piscataway, New Jersey, USA: IEEE, 2021: 1444-1449
|
14 |
ZHAO C, ZHANG C, GUO F, et al. Research on path following control method of agricultural machinery autonomous navigation through lqr-feed forward control[C]// 2021 IEEE International Conference on Data Science and Computer Application (ICDSCA). Dalian, China: IEEE, 2021: 228-233.
|
15 |
PURBOWASKITO W, TELAUMBANUA M. Simulation study of Kalman-bucy filter based optimal yaw rate control system for autonomous tractor[J]. IOP conference series: Earth and environmental science, 2019, 355(1): ID 012102.
|
16 |
DENG Z W, JIN Y H, GAO W, et al. A closed-loop directional dynamics control with LQR active trailer steering for articulated heavy vehicle[J]. Proceedings of the institution of mechanical engineers, part D: Journal of automobile engineering, 2023, 237(12): 2741-2758.
|
17 |
GENG G S, JIANG F, CHAI C, et al. Design and experiment of magnetic navigation control system based on fuzzy PID strategy[J]. Mechanical sciences, 2022, 13(2): 921-931.
|
18 |
LIU J, WU X, QUAN L, et al. Fuzzy adaptive PID control for path tracking of field intelligent weeding machine[J]. AIP advances, 2024, 14(3): 35-45.
|
19 |
张锦辉, 李彦明, 齐文超, 等. 基于神经网络PID的丘陵山地拖拉机姿态同步控制系统[J]. 农业机械学报, 2020, 51(12): 356-366.
|
|
ZHANG J H, LI Y M, QI W C, et al. Synchronous control system of tractor attitude in hills and mountains based on neural network PID[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(12): 356-366.
|
20 |
严国军, 贲能军, 顾建华, 等. 基于MPC的无人驾驶拖拉机轨迹跟踪控制[J]. 重庆交通大学学报(自然科学版), 2019, 38(9): 1-6.
|
|
YAN G J, BEN N J, GU J H, et al. Trajectory tracking control of intelligent tractor based on MPC algorithm[J]. Journal of Chongqing Jiaotong University (natural science), 2019, 38(9): 1-6.
|
21 |
TOUMIEH C, LAMBERT A. Decentralized multi-agent planning using model predictive control and time-aware safe corridors[J]. IEEE robotics and automation letters, 2022, 7(4): 11110-11117.
|
22 |
贺庆, 冀杰, 冯伟, 等. 割草机器人自适应时域MPC路径跟踪控制方法[J]. 智慧农业(中英文), 2024, 6(3): 82-93.
|
|
HE Q, JI J, FENG W, et al. Adaptive time horizon MPC path tracking control method for mowing robot[J]. Smart agriculture, 2024, 6(3): 82-93.
|
23 |
LIU L X, WANG X, WANG X S, et al. Path planning and tracking control of tracked agricultural machinery based on improved A* and fuzzy control[J]. Electronics, 2024, 13(1): ID 188.
|
24 |
GUTIÉRREZ R, LÓPEZ-GUILLÉN E, BERGASA L M, et al. A waypoint tracking controller for autonomous road vehicles using ROS framework[J]. Sensors, 2020, 20(14): ID 4062.
|
25 |
DANG S T, DINH X M, KIM T D, et al. Adaptive backstepping hierarchical sliding mode control for 3-wheeled mobile robots based on RBF neural networks[J]. Electronics, 2023, 12(11): ID 2345.
|
26 |
BULGAKOV V, PASCUZZI S, IVANOVS S, et al. Measure of the deflections from linear trajectory of a skid-steer gantry tractor during its motion[C]// 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). Piscataway, New Jersey, USA: IEEE, 2021: 22-26.
|
27 |
IBRAHIM F, ABOUELSOUD A A, FATH EL BAB A M R, et al. Discontinuous stabilizing control of skid-steering mobile robot (SSMR)[J]. Journal of intelligent & robotic systems, 2019, 95(2): 253-266.
|
28 |
TSAI S H, CHEN Y W. A novel identification method for Takagi-Sugeno fuzzy model[J]. Fuzzy sets and systems, 2018, 338: 117-135.
|
29 |
SHENG Z L, LIN C, CHEN B, et al. An asymmetric Lyapunov-krasovskii functional method on stability and stabilization for T-S fuzzy systems with time delay[J]. IEEE transactions on fuzzy systems, 2022, 30(6): 2135-2140.
|
30 |
GHANY M A, SHAMSELDIN M A. Parallel distribution compensation PID based on Takagi-Sugeno fuzzy model applied on Egyptian load frequency control[J]. International journal of electrical and computer engineering (IJECE), 2020, 10(5): ID 5274.
|
31 |
MAITI R, SHARMA KDAS, SARKAR G, et al. Modeling and control of delayed, nonlinear, uncertain, and disturbed air heater employing fuzzy PDC-L1 adaptive scheme[J]. IEEE transactions on industrial electronics, 2021, 68(11): 11328-11338.
|
32 |
MAGHFIROH H, NIZAM M, ANWAR M, et al. Improved LQR control using PSO optimization and Kalman filter estimator[J]. IEEE access, 2022, 10: 18330-18337.
|
33 |
潘良, 佘小明, 傅川, 等. 小型通用轮式电动底盘设计与试验[J]. 农机化研究, 2023, 45(9): 240-244.
|
|
PAN L, SHE X M, FU C, et al. Design and test of small all-purpose wheeled electric chassis[J]. Journal of agricultural mechanization research, 2023, 45(9): 240-244.
|