1 | BRIGLIA N, WILLIAMS K, WU D, et al. Image-based assessment of drought response in grapevines[J]. Frontiers in Plant Science, 2020, 11: 595. | 2 | ROSE J C, PAULUS S, KUHLMANN H. Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level[J]. Sensors, 2015, 15: 9651-9665. | 3 | GUAN H, LIU M, MA X, et al. Three-dimensional reconstruction of soybean canopies using multisource imaging for phenotyping analysis[J]. Remote Sensing, 2018, 10(8): ID 1206. | 4 | WANG Y, WEN W, WU S, et al. Maize plant phenotyping: Comparing 3D laser scanning, multi-view stereo reconstruction, and 3D digitizing estimates[J]. Remote Sensing, 2018, 11(1): ID 63. | 5 | MASUDA T. 3D shape reconstruction of plant roots in a cylindrical tank from multiview images[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway, New York, USA: IEEE, 2019: 2149-2157. | 6 | NGUYEN T, SLAUGHTER D, MAX N, et al. Structured light-based 3D reconstruction system for plants[J]. Sensors, 2015, 15(8). 18587-18612. | 7 | NI X, LI C, JIANG H, et al. Three-dimensional photogrammetry with deep learning instance segmentation to extract berry fruit harvestability traits[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171: 297-309. | 8 | JIANG Y, LI C, TAKEDA F, et al. 3D point cloud data to quantitatively characterize size and shape of shrub crops[J]. Horticulture Research, 2019, 6(1): 43-59. | 9 | JIN S, SU Y, WU F, et al. Stem-leaf segmentation and phenotypic trait extraction of individual maize using terrestrial LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(3): 1336-1346. | 10 | SUN S, LI C, CHEE P W, et al. Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering[J]. Journal of Photogrammetry and Remote Sensing, 2020, 160: 195-207. | 11 | 刘守阳, 金时超, 郭庆华, 等. 基于数字化植物表型平台(D3P)的田间小麦冠层光截获算法开发[J]. 智慧农业(中英文), 2020, 2(1): 87-98. | 11 | LIU S, JIN S, GUO Q, et al. An algorithm for estimating field wheat canopy light interception based on digital plant phenotyping platform[J]. Smart Agriculture, 2020, 2(1): 87-98. | 12 | 马福峰, 耿楠, 张志毅. 基于邻域几何特征约束的植株三维形态配准方法研究[J]. 计算机应用与软件, 2016, 33(9): 184-189. | 12 | MA F, GENG N, ZHANG Z. On 3D plant morphology registration method based on geometrical feature constraint of neighborhood[J]. Computer Applications and Software, 2016, 33(9): 184-189. | 13 | CHAUDHURY A B M, BARRON J L. Junction-based correspondence estimation of plant point cloud data using subgraph matching[J]. IEEE Geoscience & Remote Sensing Letters, 2016, 13(8): 1119-1123. | 14 | YANG L, ZHAI R, YANG X, et al. Segmentation of plant organs point clouds through super voxel-based region growing methodology[J]. Computer Engineering and Applications, 2019, 55(16): 197-203.. | 15 | LI D, CAO Y, TANG X, et al. Leaf segmentation on dense plant point clouds with facet region growing[J]. Sensors, 2018, 18(11): ID 3625. | 16 | GELARD W, DEVY M, HERBULOT A, et al. Model-based segmentation of 3D point clouds for phenotyping sunflower plants[C]// 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Porto. Portugal, 2017: ID hal-02733980. | 17 | 梁秀英, 周风燃, 陈欢, 等. 基于运动恢复结构的玉米植株三维重建与性状提取[J]. 农业机械学报, 2020, 51(6): 209-219. | 17 | LIANG X, ZHOU F, CHEN H, et al. Three-dimensional maize plants reconstruction and traits extraction based on structure from motion[J].Transactions of the CSAM, 2020, 51(6): 209-219. | 18 | WAHABZADA M, PAULUS S, KERSTING K, et al. Automated interpretation of 3D laserscanned point clouds for plant organ segmentation[J]. BMC Bioinformatics, 2015, 16(1): ID 248. | 19 | 喻垚慎, 云挺, 杨绪兵. 基于激光点云数据的植物器官多维特征分割方法[J]. 数据采集与处理, 2015, 30(5): 1054-1061. | 19 | YU Y, YUN T, YANG X. Multi dimension feature segmentation method of foliage organs based on laser point cloud data[J]. 2015, 30(5): 1054-1061. | 20 | SU Y, WU F, AO Z, et al. Evaluating maize phenotype dynamics under drought stress using terrestrial LiDAR[J]. Plant Methods, 2019, 15(1): ID 11. | 21 | CHAUDHURY AYAN, WARD CHRISTOPHER, TALASAZ ALI. Machine vision system for 3D plant phenotyping[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(6): 2009-2022. | 22 | SUN S, LI C, PATERSON A H, et al. In-field high throughput phenotyping and cotton plant growth analysis using LiDAR[J]. Frontiers in Plant Science, 2018, 9: 1-17. | 23 | AN N, WELCH S, MARKELZ R, et al. Quantifying time-series of leaf morphology using 2D and 3D photogrammetry methods for high-throughput plant phenotyping[J]. Computers & Electronics in Agriculture, 2017, 135: 222-232. | 24 | 阳旭. 基于多时相点云数据的作物表型参数获取及动态量化方法研究[D]. 湖北: 华中农业大学, 2019. | 24 | YANG X. Research on crop phenotypic parameters acquisition and dynamic quantification method based on multi-temporal point cloud data[D]. Hubei: Huazhong Agricultural University, 2019. | 25 | RUSU R B, HOLZBACH A, BLODOW N, et al. Fast geometric point labeling using conditional random fields[C]// 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, New York, USA: IEEE, 2009: 7-12. | 26 | 史蒲娟, 翟瑞芳, 常婷婷, 等. 基于单目视觉和激光扫描技术的油菜植株模型重建及株型参数测量[J]. 华中农业大学学报, 2017, 36(3): 63-68. |
|