1 | 袁会珠, 杨代斌, 闫晓静, 等. 农药有效利用率与喷雾技术优化[J]. 植物保护, 2011, 37(5): 14-20. | 1 | YUAN H, YANG D, YAN X, et al. Pesticide effective utilization rate and spray technology optimization[J]. Plant Protection, 2011, 37(5): 14-20. | 2 | 何雄奎. 中国精准施药技术和装备研究现状及发展建议[J]. 智慧农业(中英文), 2020, 2(1): 133-146. | 2 | HE X. Research progress and developmental recommendations on precision spraying technology and equipment in China[J]. Smart Agriculture, 2020, 2(1): 133-146. | 3 | 翟长远, 赵春江, WANG N, 等. 果园风送喷雾精准控制方法研究进展[J]. 农业工程学报, 2018, 34(10): 1-15. | 3 | ZHAI C, ZHAO C, WANG N, et al. Research progress on precision control methods of air-assisted spraying in orchards[J]. Transactions of the CSAE, 2018, 34(10): 1-15. | 4 | MIRANDA-FUENTES A, RODRIGUEZ-LIZANA A, GIL E, et al. Influence of liquid-volume and airflow rates on spray application quality and homogeneity in super-intensive olive tree canopies[J]. Science of the Total Environment, 2015. 537: 250-259. | 5 | LIAO J, LUO X, WANG P, et al. Analysis of the influence of different parameters on droplet characteristics and droplet size classification categories for air induction nozzle[J]. Agronomy, 2020, 10(2): ID 256. | 6 | YANG F, XUE X, CAI C, et al. Numerical simulation and analysis on spray drift movement of multirotor plant protection unmanned aerial vehicle[J]. Energies, 2018, 11(9): ID 2399. | 7 | LANDERS A J. Developments towards an automatic precision sprayer for fruit crop canopies[C]// Pittsburgh, Pennsylvania. Michigan, USA: American Society of Agricultural and Biological Engineers, 2010. | 8 | 李龙龙, 何雄奎, 宋坚利, 等. 基于变量喷雾的果园自动仿形喷雾机的设计与试验. 农业工程学报, 2017, 33(1): 70-76. | 8 | LI L, HE X, SONG J, et al. Design and experiment of orchard automatic profiling sprayer based on variable spray[J]. Transactions of the CSAE, 2017, 33(1): 70-76. | 9 | QIU W, ZHAO S, DING W, et al. Effects of fan speed on spray deposition and for targeting air-assisted sprayer in pear orchard[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(4): 53-62. | 10 | OSTERMAN A, GODESA T, HOCEVAR M, et al. Real-Time positioning algorithm for variable-geometry air-assisted orchard sprayer[J]. Computers and Electronics in Agriculture, 2013, 98: 175-182. | 11 | GU J, ZHU H, DING W. Unimpeded air velocity profiles of an air-assisted five-port sprayer[J]. Transactions of the ASABE, 2012, 55(5): 1659-1666. | 12 | SALCEDO R, PONS P, LLOP J, et al. Dynamic evaluation of airflow stream generated by a reverse system of an axial fan sprayer using 3D-ultrasonic anemometers. Effect of canopy structure[J]. Computers and Electronics in Agriculture, 2019, 163: 1-14. | 13 | 陈建泽, 宋淑然, 孙道宗, 等. 远射程风送式喷雾机气流场分布及喷雾特性试验. 农业工程学报, 2017, 33(24): 72-79. | 13 | CHEN J, SONG S, SUN D, et al. Experiment on the distribution and spray characteristics of the air flow field of the long range air feed sprayer[J]. Transactions of the CSAE, 2017, 33 (24): 72-79 | 14 | HOLOWNICKI R, DORUCHOWSKI G, SWIECH- OWSKI W, et al. Variable air assistance system for orchard sprayers; concept, design and preliminary testing[J]. Biosystems Engineering, 2017, 163: 134-149. | 15 | DUGA A T, RUYSEN K, DEKEYSER D, et al. CFD based analysis of the effect of wind in orchard spraying[J]. Chemical Engineering Transactions, 2015, 44(2015): 289-294. | 16 | HONG S W, ZHAO L, ZHU H. SAAS, a computer program for estimating pesticide spray efficiency and drift of air-assisted pesticide applications[J]. Computers and Electronics in Agriculture, 2018, 155: 58-68. | 17 | BAHLOL H Y, CHANDEL A K, HOHEISEL G A, et al. The smart spray analytical system: Developing understanding of output air-assist and spray patterns from orchard sprayers[J]. Crop Protection, 2020, 127: ID 104977. | 18 | 王景旭, 祁力钧, 夏前锦. 靶标周围流场对风送喷雾雾滴沉积影响的CFD模拟及验证[J]. 农业工程学报, 2015, 31(11): 46-53. | 18 | WANG J, QI L, XIA Q. CFD simulation and validation of trajectory and deposition behavior of droplets around target affected by air flow field in greenhouse[J]. Transactions of the CSAE, 2015, 31(11): 46 -53. | 19 | SALCEDO R, VALLET A, GRANELL R, et al. Eulerian-Lagrangian model of the behaviour of droplets produced by an air-assisted sprayer in a citrus orchard[J]. Biosystems Engineering, 2017: 76-91. | 20 | HONG S W, ZHAO L, ZHU H. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses[J]. Atmospheric Environment, 2018, 175: 109-119. | 21 | ATAM E, HONG S W, ARTECONI A. Thermofluid modelling of large-scale orchards for optimal design and control of active frost prevention systems[J]. Energies, 2020, 13(2): 378. | 22 | SALCEDO R, GRANELL R, PALAU G, et al. Design and validation of a 2D CFD model of the airflow produced by an airblast sprayer during pesticide treatments of citrus[J]. Computers and Electronics in Agriculture, 2015, 116: 150-161. | 23 | DEKEYSER D, DUGA A T, VERBOVEN P, et al. Assessment of orchard sprayers using laboratory experiments and computational fluid dynamics modeling[J]. Biosystems Engineering, 2013, 114: 157-169. | 24 | ENDALEW A M, HERTOG M, GEBREHIWOT M G, et al. Modelling airflow within model plant canopies using an integrated approach[J]. Computers and Electronics in Agriculture, 2009, 66(1): 9-24. | 25 | ENDALEW A M, DEBAER C, RUTTEN N, et al. A new integrated CFD modelling approach towards air-assisted orchard spraying—Part II: Validation for different sprayer types[J]. Computers and Electronics in Agriculture, 2010, 71(2): 137-147. | 26 | DUGA A T, DELELE M A, RUYSEN K, et al. Development and validation of a 3D CFD model of drift and its application to air-assisted orchard sprayers[J]. Biosystems Engineering, 2016, 154: 62-75. | 27 | GARCIA-RAMOS F J, MALON H, AGUIRRE A, et al. Validation of a CFD model by using 3D sonic anemometers to analyze the air velocity generated by an air-assisted sprayer equipped with two axial fans[J]. Sensors, 2015, 15(2): 2399-2418. | 28 | HONG S W, ZHAO L, ZHU H. CFD simulation of airflow inside tree canopies discharged from air-assisted sprayers[J]. Computers and Electronics in Agriculture, 2017, 149: 121-132. | 29 | BADULES J, VIDAL M, BONE A, et al. Comparative study of CFD models of the air flow produced by an air-assisted sprayer adapted to the crop geometry[J]. Computers and Electronics in Agriculture, 2018, 149: 166-174. | 30 | 王福军. 计算流体动力学分析, CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004. | 30 | WANG F. Computational fluid dynamics analysis, principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004. | 31 | YANG Y, TSE K T, JIN X, et al. A numerical tree canopy model and its application in computational wind engineering simulation[C]// The 7th International Colloquium on Bluff Body Aerodynamics & Applications. Amsterdam, Netherlands: Elsevier, 2012: 1429-1436. | 32 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994: 1598-1605. | 33 | SALCEDO R, GRANELL R, PALAU G, et al. Design and validation of a 2D CFD model of the airflow produced by an airblast sprayer during pesticide treatments of citrus[J]. Computers and Electronics in Agriculture, 2015, 116: 150-161. | 34 | BADULES J, VIDAL M, BONE A, et al. Comparative study of CFD models of the air flow produced by an air-assisted sprayer adapted to the crop geometry[J]. Computers and Electronics in Agriculture, 2018, 149: 166-174. |
|