1 | 傅锡敏, 吕晓兰, 丁为民. 我国果园植保机械现状与技术需求[J]. 新疆农机化, 2011(1): 61-63. | 1 | FU X, LYU X, DING W. Current situation and technical demand of orchard plant protection machinery in China[J]. Xinjiang Agricultural Mechanization, 2011(1): 61-63. | 2 | BADULES J, VIDAL M, BONé A, et al. Comparative study of CFD models of the air flow produced by an air-assisted sprayer adapted to the crop geometry[J]. Computers and Electronics in Agriculture, 2018, 149: 166-174. | 3 | 何雄奎. 中国精准施药技术和装备研究现状及发展建议[J]. 智慧农业(中英文), 2020, 2(1): 133-146. | 3 | HE X. Research progress and developmental recommendations on precision spraying technology and equipment in China[J]. Smart Agriculture, 2020, 2(1):133-146. | 4 | 张燕妮, 翟长远, 赵娟. 果园风场与雾场测量建模方法[J]. 农机化研究, 2020, 42(4): 264-268. | 4 | ZHANG Y, ZHAI C, ZHAO J. Modeling and measuring method of orchard airflow and droplet field[J]. Journal of Agricultural Mechanization Research, 2020, 42(4): 264-268. | 5 | PFEIFFER S A, GUEVARA J, CHEEIN F A, et al. Mechatronic terrestrial LiDAR for canopy porosity and crown surface estimation[J]. Computers and Electronics in Agriculture, 2018, 146: 104-113. | 6 | GIL E, ARNO J, LLORENS J, et al. Advanced technologies for the improvement of spray application techniques in Spanish viticulture: An overview[J]. Sensors, 2014, 14(1): 691-708. | 7 | PETROVI? D. Odnos selektivnog i konvencionalnog raspr?ivanja te njihov utjecaj na depozit i zano?enje teku?ine[D]. Osijek: Josip Juraj Strossmayer University of Osijek, 2018. | 8 | GRELLA M, MARUCCO P, MANZONE M, et al. Effect of sprayer settings on spray drift during pesticide application in poplar plantations (Populus spp.)[J]. Science of the Total Environment, 2017, 578: 427-439. | 9 | 康峰, 吴潇逸, 王亚雄, 等. 农药雾滴沉积特性研究进展与展望[J]. 农业工程学报, 2021, 37(20): 1-14. | 9 | KANG F, WU X, WANG Y, et al. Research progress and prospect of pesticide droplet deposition characteristics[J]. Transactions of the CSAE, 2021, 37(20): 1-14. | 10 | WU B, HUANG K, QING D, et al. Numerical simulation and optimization of perforated tube trolley in circular cooler[J]. World Journal of Engineering and Technology, 2017, 5(4): 684-695. | 11 | 邱威, 丁为民, 汪小旵, 等. 3WZ-700 型自走式果园风送定向喷雾机[J]. 农业机械学报, 2012, 43(4): 26-30, 44. | 11 | QIU W, DING W, WANG X, et al. 3WZ-700 self-propelled air-blowing orchard sprayer[J]. Transactions of the CSAM, 2012, 43(4): 26-30, 44. | 12 | 周良富, 傅锡敏, 丁为民, 等. 组合圆盘式果园风送喷雾机设计与试验[J]. 农业工程学报, 2015, 31(10): 64-71. | 12 | ZHOU L, FU X, DING W, et al. Design and experiment of combined disc air-assisted orchard sprayer[J]. Transactions of the CSAE, 2015, 31(10): 64-71. | 13 | 陈帮.离心风机进气箱导流板的优化设计[J]. 煤矿机械, 2022, 43(2):130-134. | 14 | 丁天航, 曹曙明, 薛新宇, 等. 果园喷雾机单双风机风道气流场仿真与试验[J]. 农业工程学报, 2016, 32(14): 62-68, 315. | 14 | DING T, CAO S, XUE X, et al. Simulation and experiment on single-channel and double-channel airflow field of orchard sprayer[J]. Transactions of the CSAE, 2016, 32(14): 62-68, 315. | 15 | ENDALEW A M, DEBAERB C, RUTTEN N, et al. A new integrated CFD modelling approach towards air-assisted orchard spraying—Part I: Model development and effect of wind speed and direction on sprayer airflow[J]. Computers and Electronics in Agriculture, 2010, 71(1): 128-136. | 16 | NUYTTENS D, ZWERTVAEGHER I K A, DEKEYSER D. Spray drift assessment of different application techniques using a drift test bench and comparison with other assessment methods[J]. Biosystems Engineering, 2017, 154: 14-24. | 17 | BADULES J, VIDAL M, BONé A, et al. Comparative study of CFD models of the air flow produced by an air-assisted sprayer adapted to the crop geometry[J]. Computers and Electronics in Agriculture, 2018, 149: 166-174. | 18 | HONG S W, ZHAO L, ZHU H. CFD simulation of airflow in side tree canopies discharged from air-assisted sprayers[J]. Computers and Electronics in Agriculture, 2017, 149: 121-132. | 19 | ZHENG Y, YANG S, LIU X, et al. The computational fluid dynamic modeling of downwash flow field for a six-rotor UAV[J]. Frontiers of Agricultural Science and Engineering, 2018, 5(2): 159-167. | 20 | HO?OWNICKI R, DORUCHOWSKI G, ?WIECHOWSKI W, et al. Variable air assistance system for orchard sprayers: Concept, design and preliminary testing[J]. Biosystems Engineering, 2017, 163: 134-149. | 21 | 翟长远, 张燕妮, 窦汉杰, 等. 果园风送喷雾机出风口风场CFD建模与试验[J]. 智慧农业(中英文) 2021, 3(3): 70-81. | 21 | ZHAI C, ZHANG Y, DOU H, et al. CFD modeling and experiment of airflow at the air outlet of orchard air-assisted sprayer[J]. Smart Agriculture, 2021, 3(3): 70-81. | 22 | 李建平, 边永亮, 杨欣, 等. 果园多风机风送喷雾机作业参数优化与试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2474-2485. | 22 | LI J, BIAN Y, YANG X, et al. Operational parameter optimization and testing of an air-assisted multi-fan orchard sprayer[J]. Journal of Jilin University (Engineering Edition), 2022, 52(10): 2474-2485. | 23 | 姜宗月. 果园定向仿形弥雾机的研制与试验[D]. 泰安: 山东农业大学, 2014. | 23 | JIANG Z. Development and experiment of directional profiling orchard mist sprayer[D]. Taian: Shandong Agricultural University, 2014. | 24 | 戴奋奋. 风送喷雾机风量的选择与计算[J]. 植物保护, 2008(6): 124-127. | 24 | DAI F. Selection and calculation of the blowing rate of air-assisted sprayers[J]. Plant Protection, 2008(6): 124-127. |
|