| 1  |   HEWITT A J ,  JOHNSON D R ,  FISH J D , et al . Development of the spray drift task force database for aerial applications[J]. Environmental Toxicology and Chemistry, 2002, 21(3): 648-658. |  | 2  |   BIRD S L ,  PERRY S G , RAY S L, et al . Evaluation of the AgDISP aerial spray algorithms in the AgDRIFT model[J]. Environmental Toxicology and Chemistry, 2002, 21(3): 672-681. |  | 3  |   TESKE M ,  THISTLE H ,  FRITZ B  . Modeling aerially applied sprays: An update to AgDISP model development[J]. Transactions of the ASABE, 2019, 62(2): 343-354. |  | 4  |   TESKE M ,  THISTLE H ,  SCHOU W , et al . A review of computer models for pesticide deposition prediction[J]. Transactions of the ASABE, 2011, 54: 1-14. |  | 5  |   TSAY J ,  LIANG L ,  LU L  . Evaluation of an air‐assisted boom spraying system under a no-canopy condition using CFD simulation[J]. Transactions of the ASABE, 2004, 47(6): 1887-1897. |  | 6  |   DELELE M A ,  JAEKEN P ,  DEBAER C , et al . CFD prototyping of an air-assisted orchard sprayer aimed at drift reduction[J]. Computers and Electronics in Agriculture, 2007, 55(1): 16-27. |  | 7  |   DEKEYSER D ,  DUGA A T ,  VERBOVEN P , et al . Assessment of orchard sprayers using laboratory experiments and computational fluid dynamics modelling[J]. Biosystems Engineering, 2013, 114(2): 157-169. |  | 8  |   ENDALEW A M ,  DEBAER C ,  RUTTEN N , et al . A new integrated CFD modelling approach towards air-assisted orchard spraying: Part I. Model development and effect of wind speed and direction on sprayer airflow[J]. Computers and Electronics in Agriculture, 2010, 71(2): 128-136. |  | 9  |   ENDALEW A M ,  DEBAER C ,  RUTTEN N , et al . A new integrated CFD modelling approach towards air-assisted orchard spraying: Part II. Validation with different machine types[J]. Computers and Electronics in Agriculture, 2010, 71(2): 137-147. |  | 10  |   ENDALEW A M ,  HENDRICKX N ,  GOOSSENS T , et al . An integrated approach to investigate the orchard spraying process: Toward a CFD model incorporating tree architecture[C]// ASABE International Meeting, St. Joseph, Michigan: ASABE, 2010. |  | 11  |   DUGA A T ,  DELELE M A , RUYSENK, et al . Development and validation of a 3D CFD model of drift and its application to air-assisted orchard sprayers[J]. Biosystems Engineering, 2017, 154: 62-75. |  | 12  |   BAETENS K ,  NUYTTENS D ,  VERBOVEN P , et al . Predicting drift from field spraying by means of a 3D computational fluid dynamics model[J]. Computers and Electronics in Agriculture, 2007, 56(2): 161-173. |  | 13  |   ZHANG B ,  TANG Q ,  CHEN L , et al . Numerical simulation of spray drift and deposition from a crop spraying aircraft using a CFD approach[J]. Biosystems Engineering, 2018, 166: 184-199. |  | 14  |   ZHANG B ,  TANG Q ,  CHEN L , et al . Numerical simulation of wake vortices of crop spraying aircraft close to the ground[J]. Biosystems Engineering, 2016, 145: 52-64. |  | 15  |   TESKE M E ,  WACHSPRESS D A ,  THISTLE H W  . Prediction of aerial spray release from UAVs[J]. Transactions of the ASABE, 2018, 61(3): 909-918. |  | 16  |   QUACKENBUSH T R ,  BLISS D B ,  WACHSPRESS D A , et al . Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis[R]. NASA Contractor Report 177611, 1993. |  | 17  |   QUACKENBUSH T R ,  WACHSPRESS D A ,  BLISS D B , et al . Helicopter free wake analyses using influence coefficients[R]. NASA Contractor Report 177612,1993. |  | 18  |   QUACKENBUSH T R , LAM C M G,  WACHSPRESS D A , et al . Analysis of high resolution unsteady airloads for helicopter rotor blades[C]// American Helicopter Society 50th Annual Forum Proceedings. Washington, D.C., USA: American Helicopter Society, 1994. |  | 19  |   QUACKENBUSH T ,  WACHSPRESS D ,  BLISS D  . New free-wake analysis of rotorcraft hover performance using influence coefficients[J]. Journal of Aircraft, 1989, 26: 1090-1097. |  | 20  |   WACHSPRESS D ,  QUACKENBUSH T ,  BOSCHITSCH A  . Rotorcraft interactional aerodynamics with fast vortex/fast panel methods[J]. Journal of The American Helicopter Society, 2003, 48: 223-235. |  | 21  |   RULE J A ,  BLISS D B  . Prediction of turbulent trailing vortex structure for rotorcraft blade-vortex interaction[C]// American Helicopter Society 51st Annual Forum Proceedings. Fort Worth, TX: American Helicopter Society, 1995. |  | 22  |   ASHBY D L ,  DUDLEY M R ,  IGUCHI S K  . Development and validation of an advanced low-order panel method[R]. NASA Technical Memorandum 101024, 1988. |  | 23  |   Maskew B  . Program VSAERO theory document[R]. NASA Contractor Report 4023, 1987. |  | 24  |   MORINO L , KUO C C . Subsonic potential aerodynamics for complex configurations: A general theory[J]. AIAA Journal, 1974, 12(2): 191-197. |  | 25  |   APPEL A W  . An efficient program for many-body simulation[J]. SIAM Journal on Scientific Statistical Computing, 1985, 6(1): 85-103. |  | 26  |   TADROS T F  . Interactions at interfaces and effects on transfer and performance[J]. Aspects of Applied Biology, 1987, 14: 1-22. |  | 27  |   SCHOU W ,  FORSTER W A ,  MERCER G , et al . Building canopy retention into AGDISP: Preliminary models and results[J]. Transactions of the ASABE, 2012, 55: 2059-2066. |  | 28  |   ATTANé P ,  GIRARD F ,  MORIN V  . An energy balance approach of the dynamics of drop impact on a solid surface[J]. Physics of Fluids, 2007, 19(1): ID 012101. |  | 29  |   FORSTER W A ,  MERCER G N ,  SCHOU W C  . Process driven models for spray droplet shatter, adhesion or bounce[C]// 9th International Symposium on Adjuvants for Agrochemicals. Munich, Germany: Technical University of Munich, 2010. |  | 30  |   YANG F ,  XUE X ,  ZHANG L , et al . Numerical simulation and experimental verification on downwash air flow of six-rotor agricultural unmanned aerial vehicle in hover[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(4): 41-53. |  | 31  |  杨风波, 薛新宇, 蔡晨, 等 . 多旋翼植保无人机悬停下洗气流对雾滴运动规律的影响[J]. 农业工程学报, 2018, 34(2): 64-73. |  | 31  |   YANG F ,  XUE X ,  CAI C , et al . Effect of down wash airflow in hover on droplet motion law for multi-rotor unmanned plant protection machine[J]. Transactions of the CSAE, 2018, 34(2): 64 -73. |  | 32  |   SHI Q ,  MAO H ,  GUAN X  . Numerical simulation and experimental verification of the deposition concentration of an unmanned aerial vehicle[J]. Applied Engineering in Agriculture, 2019, 35: 367-376. |  | 33  |   ZHU H ,  LI H ,  ZHANG C , et al . Performance characterization of the UAV chemical application based on CFD simulation[J]. Agronomy, 2019, 9(6): ID 308. |  | 34  |  张宋超, 薛新宇, 秦维彩, 等 . N-3型农用无人直升机航空施药飘移模拟与试验[J]. 农业工程学报, 2015, 31(3): 87-93. |  | 34  |   ZHANG S ,  XUE X ,  QIN W , et al . Simulation and experimental verification of aerial spraying drift on N-3 unmanned spraying helicopter[J]. Transactions of the CSAE, 2015, 31(3): 87-93. |  | 35  |  张豪, 祁力钧, 吴亚垒, 等 . 基于Porous模型的多旋翼植保无人机下洗气流分布研究[J]. 农业机械学报, 2019, 50(2): 112-122. |  | 35  |   ZHANG H ,  QI L ,  WU Y , et al . Spatio-temporal distribution of downwash airflow for multirotor plant protection UAV based on porous model[J]. Transactions of the CSAM, 2019, 50(2): 112-122. |  | 36  |  杨知伦, 葛鲁振, 祁力钧, 等 . 植保无人机旋翼下洗气流对喷幅的影响研究[J]. 农业机械学报, 2018, 49(1): 116-122. |  | 36  |   YANG Z ,  GE L ,  QI L , et al . Influence of UAV rotor down-wash airflow on spray width[J]. Transactions of the CSAM, 2018, 49(1): 116-122. |  | 37  |   XU L ,  WENG P  . High order accurate and low dissipation method for unsteady compressible viscous flow computation on helicopter rotor in forward flight[J]. Journal of Computational Physics, 2014, 258: 470-488. |  | 38  |   LAKSHMINARAYAN V ,  KALRA T S ,  BAEDER J  . Detailed computational investigation of a hovering microscale rotor in ground effect[J]. AIAA Journal, 2013, 51(4): 893-909. |  | 39  |   KALRA T  . CFD modeling and analysis of rotor wake in hover interacting with a ground plane[D]. Maryland: The University of Maryland, College Park, 2014. |  | 40  |   CHEN S ,  DOOLEN G  . Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 329-364. |  | 41  |   SUGA K ,  KUWATA Y ,  TAKASHIMA K , et al . A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows[J]. Computers and Mathematics with Applications, 2015, 69(6): 518-529. |  | 42  |  Xflow  2017 theory guide[Z]. 2011-2017 Dassault Systèmes Espa?a, SLU. |  | 43  |   ZHANG H ,  QI L ,  WU Y , et al . Numerical simulation of airflow field from a six-rotor plant protection drone using lattice Boltzmann method[J]. Biosystems Engineering, 2020, 197: 336-351. |  | 44  |  文晟, 韩杰, 兰玉彬, 等 . 单旋翼植保无人机翼尖涡流对雾滴漂移的影响[J]. 农业机械学报, 2018, 49(8): 127-137, 160. |  | 44  |   WEN S ,  HAN J ,  LAN Y , et al . Influence of wing tip vortex on drift of single rotor plant protection unmanned aerial vehicle[J].Transactions of the CSAM, 2018, 49(8): 127-137, 160. |  | 45  |   WEN S ,  HAN J ,  NING Z , et al . Numerical analysis and validation of spray distributions disturbed by quad-rotor drone wake at different flight speeds[J]. Computers and Electronics in Agriculture, 2019, 166: ID 105036. |  | 46  |   TANG Q ,  ZHANG R ,  CHEN L , et al . Numerical simulation of the downwash flow field and droplet movement from an unmanned helicopter for crop spraying[J]. Computers and Electronics in Agriculture, 2020, 174: ID 105468. |  | 47  |   TANG Q ,  CHEN L ,  ZHANG R , et al . Effects of application height and crosswind on the crop spraying performance of unmanned helicopters[J]. Computers and Electronics in Agriculture, 2021, 181: ID 105961. |  | 48  |  唐青, 陈立平, 张瑞瑞, 等 . 高速气流条件下标准扇形喷头和空气诱导喷头雾化特性[J]. 农业工程学报, 2016, 32(22): 121-128. |  | 48  |   TANG Q ,  CHEN L ,  ZHANG R , et al . Atomization characteristics of normal flat fan nozzle and air induction nozzle under high speed airflow conditions[J]. Transactions of the CSAE, 2016, 32(22): 121-128. |  | 49  |   TANG Q ,  CHEN L ,  ZHANG R , et al . Droplet spectra and high-speed wind tunnel evaluation of air induction nozzles[J]. Frontiers of Agricultural Science and Engineering, 2018, 5(4): 442-454. |  | 50  |   KIRK I W  . Measurement and prediction of atomization parameters from fixed-wing aircraft spray nozzles[J]. Transactions of the ASABE, 2007, 50, 693-703. |  | 51  |   FRITZ B ,  HOFFMANN W C ,  BAGLEY W , et al . Measuring droplet size of agricultural spray nozzles-measurement distance and airspeed effects[J]. Atomization and Sprays, 2014, 24: 747-760. |  | 52  |  李继宇, 周志艳, 兰玉彬, 等 . 旋翼式无人机授粉作业冠层风场分布规律[J]. 农业工程学报, 2015, 31(3): 77-86. |  | 52  |   LI J ,  ZHOU Z ,  LAN Y , et al . Distribution of canopy wind field produced by rotor unmanned aerial vehicle pollination operation[J]. Transactions of the CSAE, 2015, 31(3): 77-86. |  | 53  |  王昌陵, 何雄奎, 王潇楠, 等 . 无人植保机施药雾滴空间质量平衡测试方法[J]. 农业工程学报, 2016, 32(11): 54-61. |  | 53  |   WANG C ,  HE X ,  WANG X , et al . Testing method of spatial pesticide spraying deposition quality balance for unmanned aerial vehicle[J]. Transactions of the CSAE, 2016, 32(11): 54-61. |  | 54  |  陈盛德, 兰玉彬, 李继宇, 等 . 植保无人机航空喷施作业有效喷幅的评定与试验[J]. 农业工程学报, 2017, 33(7): 82-90. |  | 54  |   CHEN S ,  LAN Y ,  LI J , et al . Evaluation and test of effective spraying width of aerial spraying on plant protection UAV[J]. Transactions of the CSAE, 2017, 33(7): 82-90. |  | 55  |  王昌陵, 宋坚利, 何雄奎, 等 . 植保无人机飞行参数对施药雾滴沉积分布特性的影响[J]. 农业工程学报, 2017, 33(23): 109-116. |  | 55  |   WANG C ,  SONG J ,  HE X , et al . Effect of flight parameters on distribution characteristics of pesticide spraying droplets deposition of plant-protection unmanned aerial vehicle[J]. Transactions of the CSAE, 2017, 33(23): 109-116. |  | 56  |   WEN Y ,  ZHANG R ,  CHEN L , et al . A new spray deposition pattern measurement system based on spectral analysis of a fluorescent tracer[J]. Computers and Electronics in Agriculture, 2019, 160: 14-22. |  | 57  |   ZHANG R ,  WEN Y ,  LI L , et al . Method for UAV spraying pattern measurement with PLS model based spectrum analysis[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(3): 22-28. |  | 58  |  张京, 何雄奎, 宋坚利, 等 . 无人驾驶直升机航空喷雾参数对雾滴沉积的影响[J]. 农业机械学报, 2012, 43(12): 94-96. |  | 58  |   ZHANG J ,  HE X ,  SONG J , et al . Influence of spraying parameters of unmanned aircraft on droplets deposition[J].Transactions of the CSAM, 2012, 43(12): 94-96. |  | 59  |   JIAO L ,  DONG D ,  FENG H , et al . Monitoring spray drift in aerial spray application based on infrared thermal imaging technology[J]. Computers and Electronics in Agriculture, 2016, 121: 135-140. |  | 60  |   GREGORIO E ,  TORRENT X ,  DE MARTí S P , et al . Measurement of spray drift with a specifically designed lidar system[J]. Sensors, 2016, 16: 1-15. |  | 61  |   KIRA O ,  LINKER R ,  DUBOWSKI Y  . Estimating drift of airborne pesticides during orchard spraying using active open path FTIR[J]. Atmospheric Environment, 2016, 142: 264-270. |  | 62  |   FRITZ B K ,  HOFFMANN W C  . Update to the USDA-ARS fixed-wing spray nozzle models[J]. Transactions of the ASABE, 2015: 281-295. |  | 63  |   HEWITT A J  . Droplet size spectra classification categories in aerial application scenarios[J]. Crop Protection, 2008, 27(9): 1284-1288. |  | 64  |   FRITZ B K ,  HOFFMANN W C ,  KRUGER G R , et al . Comparison of drop size data from ground and aerial application nozzles at three testing laboratories[J]. Atomization & Sprays, 2014, 24(2): 181-192. |  | 65  |  李龙龙, 何雄奎, 宋坚利, 等 . 基于高频电磁阀的脉宽调制变量喷头喷雾特性[J]. 农业工程学报, 2016, 32(1): 97-103. |  | 65  |   LI L ,  HE X ,  SONG J , et al . Spray characteristics on pulse-width modulation variable application based on high frequency electromagnetic valve[J]. Transactions of the CSAE, 2016, 32(1): 97-103. |  | 66  |   TANG Q ,  CHEN L P ,  ZHANG R R , et al . Droplet spectra and high-speed wind tunnel evaluation of air induction nozzles[J]. Frontiers of Agricultural Science and Engineering, 2018, 5(4): 442-454. |  | 67  |   RAFFEL M ,  GREGORIO F D ,  GROOT K D , et al . On the generation of a helicopter aerodynamic database[J]. Aeronautical Journal, 2011, 115(1164): 103-112. |  | 68  |   RAFFEL M ,  RICHARD H ,  EHRENFRIED K , et al . Recording and evaluation methods of PIV investigations on a helicopter rotor model[J]. Experiments in Fluids, 2004, 36(1): 146-156. |  | 69  |   WALL BVAN DER ,  RICHARD H  . Analysis methodology for 3C-PIV data of rotary wing vortices[J]. Experiments in Fluids, 2006, 40(5): 798-812. |  | 70  |   JOHNSON B ,  LEISHMAN J G ,  SYDNEY A  . Investigation of sediment entrainment using dual-phase, high-speed particle image velocimetry[J]. Journal of the American Helicopter Society, 2010, 55(4): 42-53. |  | 71  |   SYDNEY A ,  LEISHMAN J G  . Time-resolved measurements of rotor-induced particle flows produced by a hovering rotor[J]. Journal of the American Helicopter Society, 2014, 59: ID 022004. |  | 72  |   LEE T E ,  LEISHMAN J G ,  RAMASAMY M  . Fluid dynamics of interacting blade tip vortices with a ground plane[J]. Journal of the American Helicopter Society, 2010, 55(2): ID 022005. |  | 73  |   NATHAN N D ,  GREEN R B  . The flow around a model helicopter main rotor in ground effect[J]. Experiments in Fluids, 2012, 52(1): 151-166. |  | 74  |   TANG Q ,  ZHANG R ,  CHEN L , et al . High-accuracy, high-resolution downwash flow field measurements of an unmanned helicopter for precision agriculture[J]. Computers and Electronics in Agriculture, 2020, 173: ID 105390. |  | 75  |   TANG Q ,  ZHANG R ,  CHEN L , et al . Droplets movement and deposition of an 8-rotor agricultural UAV in downwash flow field[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3): 47-56. |  | 76  |   NUYTTENS D ,  BAETENS K ,  DE SCHAMPHELEIRE M , et al . Direct and indirect drift assessment means. Part 1: PDPA laser based droplet characterisation[J]. Communications in Agricultural and Applied Biological Sciences, 2008, 73(4): 749-756. |  | 77  |   NUYTTENS D ,  SCHAMPHELEIRE M D ,  VERBOVEN P , et al . Droplet size and velocity characteristics of agricultural sprays[J]. Transactions of the ASABE, 2009, 52(5): 1471-1480. |  | 78  |   LI S ,  CHEN C ,  WANG Y , et al . Study on the atomization characteristics of flat fn nozzles for pesticide application at low pressures[J]. Agriculture, 2021, 11(4): ID 309. |  
  |