| 1 |  BAJGUZ A,  TRETYN A. The chemical characteristic and distribution of brassinosteroids in plants[J]. Phytochemistry, 2003, 62(7): 1027-1046. | 
																													
																						| 2 |  WANG X Y,  XIONG C F,  YE T T, et al. Online polymer monolith microextraction with in situ derivatization for sensitive detection of endogenous brassinosteroids by LC-MS[J]. Microchemical journal, 2020, 158: ID 105061. | 
																													
																						| 3 |  CLOUSE S D,  SASSE J M. BRASSINOSTEROIDS: Essentialregulators of plant growth and development[J]. Annual review of plant physiology and plant molecular biology, 1998, 49: 427-451. | 
																													
																						| 4 |  TAKATSUTO S. Brassinosteroids: Distribution in plants, bioassays and microanalysts by gas chromatography: Mass spectrometry[J]. Journal of chromatography A, 1994, 658(1): 3-15. | 
																													
																						| 5 |  LUO X T,  CAI B D,  YU L, et al. Sensitive determination of brassinosteroids by solid phase boronate affinity labeling coupled with liquid chromatography-tandem mass spectrometry[J]. Journal of chromatography A, 2018, 1546: 10-17. | 
																													
																						| 6 |  PRADKO A G,  LITVINOVSKAYA R P,  SAUCHUK A L, et al. A new ELISA for quantification of brassinosteroids in plants[J]. Steroids, 2015, 97: 78-86. | 
																													
																						| 7 |  CAO L D,  ZHANG H,  ZHANG H J, et al. Determination of propionyl brassinolide and its impurities by high-performance liquid chromatography with evaporative light scattering detection[J]. Molecules, 2018, 23(3): ID 531. | 
																													
																						| 8 |  CHENG Y Y,  FENG X Z,  ZHAN T, et al. A facile indole probe for ultrasensitive immunosensor fabrication toward C-reactive protein sensing[J]. Talanta, 2023, 262: ID 124696. | 
																													
																						| 9 |  BAKHSHANDEH F,  SAHA S, SEN P, et al. A universal bacterial sensor created by integrating a light modulating aptamer complex with photoelectrochemical signal readout[J]. Biosensors and bioelectronics, 2023, 235: ID 115359. | 
																													
																						| 10 |  LIU D D,  LI M J,  LI H J, et al. Core-shell Au@Cu2O-graphene-polydopamine interdigitated microelectrode array sensor for in situ determination of salicylic acid in cucumber leaves[J]. Sensors and actuators B: chemical, 2021, 341: ID 130027. | 
																													
																						| 11 |  ALI A E,  FOUAD O A,  MOHAMED G G. Theoretical and experimental approaches to the preparation, characterization and application of a newly synthesized mesoporous Zn-MOF as a selective ionophore for Ni(II) ion in carbon paste electrode matrix[J]. Journal of molecular structure, 2023, 1285: ID 135475. | 
																													
																						| 12 |  JIANG H M,  WANG Z G,  YANG Q, et al. A novel MnO2/Ti3C2T  x MXene nanocomposite as high performance electrode materials for flexible supercapacitors[J]. Electrochimica acta, 2018, 290: 695-703. | 
																													
																						| 13 |  WANG W D,  JIANG D M,  CHEN X, et al. A sandwich-like nano-micro LDH-MXene-LDH for high-performance supercapacitors[J]. Applied surface science, 2020, 515: ID 145982. | 
																													
																						| 14 |  TU X L,  GAO F,  MA X, et al. Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide[J]. Journal of hazardous materials, 2020, 396: ID 122776. | 
																													
																						| 15 |  JIANG H M,  WANG Z G,  YANG Q, et al. Ultrathin Ti3C2T_x (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting[J]. Nano-micro letters, 2019, 11(1): 1-14. | 
																													
																						| 16 |  XIANG Y C,  FANG L A,  WU F, et al. 3D crinkled alk-Ti3C2 MXene based flexible piezoresistive sensors with ultra-high sensitivity and ultra-wide pressure range[J]. Advanced materials technologies, 2021, 6(6): ID 2001157. | 
																													
																						| 17 |  LI M H,  FANG L,  ZHOU H, et al. Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor[J]. Applied surface science, 2019, 495: ID 143554. | 
																													
																						| 18 |  ZHU Y C,  RAJOUÂ K,  LE VOT S, et al. Modifications of MXene layers for supercapacitors[J]. Nano energy, 2020, 73: ID 104734. | 
																													
																						| 19 |  WAN B L,  LIU N N,  ZHANG Z, et al. Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels[J]. Carbohydrate polymers, 2023, 314: ID 120929. | 
																													
																						| 20 |  DENG Z M,  LI L L,  TANG P P, et al. Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications[J]. ACS nano, 2022, 16(10): 16976-16986. | 
																													
																						| 21 |  LEE G S,  YUN T,  KIM H, et al. Mussel inspired highly aligned Ti(3)C(2)T(x) MXene film with synergistic enhancement of mechanical strength and ambient stability[J]. ACS nano, 2020, 14(9): 11722-11732. | 
																													
																						| 22 |  LIU C J,  YANG W,  MIN X, et al. An enzyme-free electrochemical immunosensor based on quaternary metallic/nonmetallic PdPtBP alloy mesoporous nanoparticles/MXene and conductive CuCl2 nanowires for ultrasensitive assay of kidney injury molecule-1[J]. Sensors and actuators B: chemical, 2021, 334: ID 129585. | 
																													
																						| 23 |  YAN B B,  ZHOU M,  YU Y Y, et al. Orderly Self-Stacking a High-Stability coating of MXene@Polydopamine hybrid onto textiles for multifunctional personal thermal management[J]. Composites part A: Applied science and manufacturing, 2022, 160: ID 107038. | 
																													
																						| 24 |  HE X L,  WU J X,  CHEN Y, et al. A trace amount of MXene@PDA nanosheets for low-temperature zinc phosphating coatings with superb corrosion resistance[J]. Applied surface science, 2022, 603: ID 154455. | 
																													
																						| 25 |  CHEN R H,  CHENG Y Y,  WANG P, et al. Facile synthesis of a sandwiched Ti3C2T  x MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH2)2 complexing solutions[J]. Chemical engineering journal, 2021, 421: ID 129682. | 
																													
																						| 26 |  PARK T H,  YU S, KOO M, et al. Shape-adaptable 2D titanium carbide (MXene) heater[J]. ACS nano, 2019, 13(6): 6835-6844. | 
																													
																						| 27 |  TIAN Y Q,  QIU W J,  XIE Y H, et al. Melatonin as an accelerating agent for phosphate chemical conversion coatings on mild steel with enhanced corrosion resistance[J]. Journal of the electrochemical society, 2020, 167(10): ID 101505. | 
																													
																						| 28 |  DUAN Y Y,  WANG N,  HUANG Z X, et al. Electrochemical endotoxin aptasensor based on a metal-organic framework labeled analytical platform[J]. Materials science and engineering: C, 2020, 108: ID 110501. | 
																													
																						| 29 |  ZHANG Z M,  ZHANG Y,  TAN W, et al. Preparation of styrene-co-4-vinylpyridine magnetic polymer beads by microwave irradiation for analysis of trace 24-epibrassinolide in plant samples using high performance liquid chromatography[J]. Journal of chromatography A, 2010, 1217(42): 6455-6461. | 
																													
																						| 30 |  PAN J L,  HU Y L,  LIANG T A, et al. Preparation of solid-phase microextraction fibers by in-mold coating strategy for derivatization analysis of 24-epibrassinolide in pollen samples[J]. Journal of chromatography A, 2012, 1262: 49-55. | 
																													
																						| 31 |  SWACZYNOVÁ J,  NOVÁK O,  HAUSEROVÁ E, et al. New techniques for the estimation of naturally occurring brassinosteroids[J]. Journal of plant growth regulation, 2007, 26(1): 1-14. | 
																													
																						| 32 |  TARKOWSKÁ D,  NOVÁK O,  OKLESTKOVA J, et al. The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC-ESI-MS/MS[J]. Analytical and bioanalytical chemistry, 2016, 408(24): 6799-6812. | 
																													
																						| 33 |  LIU X,  ZHONG Y,  LI W L, et al. Development and comprehensive SPE-UHPLC-MS/MS analysis optimization, comparison, and evaluation of 2, 4-epibrassinolide in different plant tissues[J]. Molecules, 2022, 27(3): ID 831. | 
																													
																						| 34 |  WANG Y K,  BAI J F,  WANG P, et al. Comparative transcriptome analysis identifies genes involved in the regulation of the pollen cytoskeleton in a genic male sterile wheat line[J]. Plant growth regulation, 2018, 86(1): 133-147. | 
																													
																						| 35 |  JANECZKO A,  BIESAGA-KOŚCIELNIAK J,  OKLEŠT'KOVÁ J, et al. Role of 24-epibrassinolide in wheat production: Physiological effects and uptake[J]. Journal of agronomy and crop science, 2010, 196(4): 311-321. | 
																													
																						| 36 |  AN X L,  TAN T Y,  ZHANG X Y, et al. Effects of light intensity on endogenous hormones and key enzyme activities of anthocyanin synthesis in blueberry leaves[J]. Horticulturae, 2023, 9(6): ID 618. | 
																													
																						| 37 |  JANECZKO A,  SWACZYNOVÁ J. Endogenous brassinosteroids in wheat treated with 24-epibrassinolide[J]. Biologia plantarum, 2010, 54(3): 477-482. | 
																													
																						| 38 |  ANURADHA S,  RAO S SRAM. Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity[J]. Plant growth regulation, 2003, 40(1): 29-32. | 
																													
																						| 39 |  LU X,  LIU R,  LIU H, et al. Experimental evidence from Suaeda glauca explains why the species is not naturally distributed in non-saline soils [J]. Science of the total environment, 2022, 817: ID 153028. | 
																													
																						| 40 |  WANG P,  LI X Y,  TIAN L, et al. Low salinity promotes the growth of broccoli sprouts by regulating hormonal homeostasis and photosynthesis[J]. Horticulture, environment, and biotechnology, 2019, 60(1): 19-30. | 
																													
																						| 41 |  AHMAD H,  HAYAT S, ALI M, et al. Regulation of Growth and Physiological traits of Cucumber (Cucumis sativus L.) through various levels of 28-Homobrassinolide under salt stress conditions[J]. Canadian journal of plant science, 2017: CJPS-2016. |