1 |
中国苹果产业协会, 国家苹果产业技术体系. 2023年度中国苹果产业发展报告[R]. 中国苹果产业协会, 2023.
|
2 |
CHAKRABORTY S, PAUL S, RAHAT-UZ-ZAMAN M. Prediction of apple leaf diseases using multiclass support vector machine[C]// 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST). Piscataway, New Jersey, USA: IEEE, 2021.
|
3 |
SINGH S, GUPTA S, TANTA A, et al. Extraction of multiple diseases in apple leaf using machine learning[J]. International journal of image and graphics, 2022, 22(3): ID 2140009.
|
4 |
KHAN A I, QUADRI S M K, BANDAY S, et al. Deep diagnosis: A real-time apple leaf disease detection system based on deep learning[J]. Computers and electronics in agriculture, 2022, 198: ID 107093.
|
5 |
AICH P, ATABY AAL, MAHYOUB M, et al. Automated plant disease diagnosis in apple trees based on supervised machine learning model[C]// 2023 15th International Conference on Developments in eSystems Engineering (DeSE). Piscataway, New Jersey, USA: IEEE, 2023.
|
6 |
AHMED I, YADAV P K. Predicting apple plant diseases in orchards using machine learning and deep learning algorithms[J]. SN computer science, 2024, 5(6): ID 700.
|
7 |
ZHAN B S, XIONG X, LI X L, et al. BHC-YOLOV8: Improved YOLOv8-based BHC target detection model for tea leaf disease and defect in real-world scenarios[J]. Frontiers in plant science, 2024, 15: ID 1492504.
|
8 |
WANG J L, QIN C C, HOU B B, et al. LCGSC-YOLO: A lightweight apple leaf diseases detection method based on LCNet and GSConv module under YOLO framework[J]. Frontiers in plant science, 2024, 15: ID 1398277.
|
9 |
李亚文, 何甜. 基于GA-SVM和特征提取的苹果叶部病害识别检测[J]. 食品与发酵科技, 2024, 60(3): 7-13.
|
|
LI Y W, HE T. Detection of apple leaf disease identification based on GA-SVM and feature extraction[J]. Food and fermentation science & technology, 2024, 60(3): 7-13.
|
10 |
邵彧, 张善文, 李萍. 基于判别局部保持投影的苹果叶部病害识别方法[J]. 东北农业科学, 2021, 46(4): 113-118, 134.
|
|
SHAO Y, ZHANG S W, LI P. Apple leaf disease recognition based on discriminant local preserving projection[J]. Journal of northeast agricultural sciences, 2021, 46(4): 113-118, 134.
|
11 |
ZHANG S L, WANG J Z, YANG K, et al. YOLO-ACT: An adaptive cross-layer integration method for apple leaf disease detection[J]. Frontiers in plant science, 2024, 15: ID 1451078.
|
12 |
WU Z, SU H, TAO X, et al. Adaptive dictionary construction for hyperspectral anomaly detection based on collaborative representation[C]// 2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, New Jersey, USA: IEEE, 2022.
|
13 |
AI S. Pathological image of apple leaf [DS/OL]. (2021-08-18)[2023-0610].
|
14 |
SHYAMALA DEVI M, ESWAR R, M D H R, et al. Encrypt decrypt ReLU activated UNet prototype based prediction of leaf disease segmentation[C]// 2024 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT). Piscataway, New Jersey, USA: IEEE, 2024.
|
15 |
黄成龙, 张忠福, 卢智浩, 等. 基于VFNet-Improved和DeepSort的棉花黄萎病病情分级[J]. 智能化农业装备学报(中英文), 2023, 4 (2): 12-21.
|
|
HUANG C L, ZHANG Z F, LU Z H, et al. Leaf gradingfor cotton verticillium wilt based on VFNet-Improved and DeepSort[J]. Journal of intelligent agricultural mechanization, 2023(2): 12-21.
|
16 |
CHEN W S, ZENG Q W, PAN B B. A survey of deep nonnegative matrix factorization[J]. Neurocomputing, 2022, 491: 305-320.
|
17 |
DE HANDSCHUTTER P, GILLIS N, SIEBERT X. A survey on deep matrix factorizations[J]. Computer science review, 2021, 42: ID 100423.
|
18 |
TRIGEORGIS G, BOUSMALIS K, ZAFEIRIOU S, et al. A deep matrix factorization method for learning attribute representations[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(3): 417-429.
|
19 |
REED I S, YU X L. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE transactions on acoustics speech and signal processing, 1990, 38: 1760-1770.
|
20 |
MOLERO J M, GARZÓN E M, GARCÍA I . et al. Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2013, 6(2): 801-814.
|
21 |
LI W, DU Q. Collaborative representation for hyperspectral anomaly detection[J]. IEEE transactions on geoscience and remote sensing, 2015, 53(3): 1463-1474.
|
22 |
ZHANG Y X, DU B, ZHANG L P, et al. A low-rank and sparse matrix decomposition-based mahalanobis distance method for hyperspectral anomaly detection[J]. IEEE transactions on geoscience and remote sensing, 2016, 54(3): 1376-1389.
|
23 |
唐辉, 王铭, 于秋实, 等. 融合改进UNet和迁移学习的棉花根系图像分割方法[J]. 智慧农业(中英文), 2023, 5 (3): 96-109.
|
|
TANG H, WANG M, YU Q S, et al. Root image segmentation method based on improved UNet and transfer learning[J]. Smart agriculture, 2023, 5(3): 96-109.
|