1 |
何微, 李俊, 王晓梅, 等. 全球油菜产业现状与我国油菜产业问题、对策[J]. 中国油脂, 2022, 47(2):1-7.
|
|
HE W, LI J, WANG X M, et al. Current status of global rapeseed industry and problems, countermeasures of rapeseed industry in China[J]. China oils and fats, 2022, 47(2):1-7.
|
2 |
KONG W W, ZHANG C, HUANG W H, et al. Application of hyperspectral imaging to detect sclerotinia sclerotiorum on oilseed rape stems[J]. Sensors, 2018, 18(1): ID 123.
|
3 |
高振, 赵春江, 杨桂燕, 等. 典型拉曼光谱技术及其在农业检测中应用研究进展[J]. 智慧农业(中英文), 2022, 4(2): 121-134.
|
|
GAO Z, ZHAO C J, YANG G Y, et al. Typical raman spectroscopy ttechnology and research progress in agriculture detection[J]. Smart Agriculture, 2022, 4(2): 121-134.
|
4 |
马盼, 杨子恒, 万虎, 等. 基于YOLOv8网络的棉蚜图像识别算法及软件系统设计[J]. 智能化农业装备学报(中英文), 2023, 4(3): 42-49.
|
|
MA P, YANG Z H, WAN H, et al. A new cotton aphid image recognition algorithm and software based on YOLOv8[J]. Journal of intelligent agricultural mechanization, 2023, 4(3): 42-49.
|
5 |
戴佩玉, 张欣, 毛星, 等. 利用空间-光谱双分支特征和动态选择的高光谱影像农作物分类[J]. 农业工程学报, 2023, 39(16): 160-170.
|
|
DAI P Y, ZHANG X, MAO X, et al. Classifying crops from hyperspectral images using spatial-spectral dual branches and dynamic feature selection[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(16): 160-170.
|
6 |
YE Z, TAN X, DAI M, et al. A hyperspectral deep learning attention model for predicting lettuce chlorophyll content[J]. Plant methods, 2024, 20(1): ID 22.
|
7 |
卢晶晶, 赵津, 申童, 等. 作物菌核病病原菌致病机制及菌核病防治研究进展[J]. 黑龙江农业科学, 2022(8): 128-133.
|
|
LU J J, ZHAO J, SHEN T, et al. Research progress on pathogenic mechanisms and control of sclerotinia-derived stem rot disease[J]. Heilongjiang agricultural sciences, 2022(8): 128-133.
|
8 |
IMANI M, GHASSEMIAN H. An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges[J]. Information fusion, 2020, 59: 59-83.
|
9 |
DATTA D, MALLICK P K, BHOI A K, et al. Hyperspectral image classification: Potentials, challenges, and future directions[J]. Computational intelligence and neuroscience, 2022, 2022: ID 3854635.
|
10 |
MEDJAHED S A, OUALI M. Band selection based on optimization approach for hyperspectral image classification[J]. The egyptian journal of remote sensing and space science, 2018, 21(3): 413-418.
|
11 |
RASTI B, HONG D F, HANG R L, et al. Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox[J]. IEEE geoscience and remote sensing magazine, 2020, 8(4): 60-88.
|
12 |
TU B, LI N Y, FANG L Y, et al. Hyperspectral image classification with multi-scale feature extraction[J]. Remote sensing, 2019, 11(5): ID 534.
|
13 |
KUMAR B, DIKSHIT O, GUPTA A, et al. Feature extraction for hyperspectral image classification: A review[J]. International journal of remote sensing, 2020, 41(16): 6248-6287.
|
14 |
叶珍, 白璘, 何明一. 高光谱图像空-谱特征提取综述[J]. 中国图象图形学报, 2021, 26(8):1737-1763.
|
|
YE Z, BAI L, HE M Y. Review of spatial-spectral feature extraction for hyperspectral image[J]. Journal of image and graphics, 2021, 26(8):1737-1763.
|
15 |
张号逵, 李映, 姜晔楠. 深度学习在高光谱图像分类领域的研究现状与展望[J]. 自动化学报, 2018, 44(6):961-977.
|
|
ZHANG H K, LI Y, JIANG Y N. Deep learning for hyperspectral imagery classification: The state of the art and prospects[J]. Acta automatica sinica, 2018, 44(6):961-977.
|
16 |
CHEN Y S, LIN Z H, ZHAO X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(6): 2094-2107.
|
17 |
李想, 胡肖楠, 李方一, 等. 苹果树叶多病害及不可辨别病害的轻量识别算法[J]. 农业工程学报, 2023, 39(14): 184-190.
|
|
LI X, HU X N, LI F Y, et al. Lightweight recognition for multiple and indistinguishable diseases of apple tree leaf[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(14): 184-190.
|
18 |
LI S T, SONG W W, FANG L Y, et al. Deep learning for hyperspectral image classification: An overview[J]. IEEE transactions on geoscience and remote sensing, 2019, 57(9): 6690-6709.
|
19 |
VIEL F, MACIEL R C, SEMAN L O, et al. Hyperspectral image classification: An analysis employing CNN, LSTM, transformer, and attention mechanism[J]. IEEE access, 2023, 11: 24835-24850.
|
20 |
HAMIDA ABEN, BENOIT A, LAMBERT P, et al. 3-D deep learning approach for remote sensing image classification[J]. IEEE transactions on geoscience and remote sensing, 2018, 56(8): 4420-4434.
|
21 |
MOU L C, GHAMISI P, ZHU X X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE transactions on geoscience and remote sensing, 2017, 55(7): 3639-3655.
|
22 |
HONG D F, HAN Z, YAO J, et al. SpectralFormer: Rethinking hyperspectral image classification with transformers[J]. IEEE transactions on geoscience and remote sensing, 2021, 60: ID 5518615.
|
23 |
MEI S H, LI X G, LIU X, et al. Hyperspectral image classification using attention-based bidirectional long short-term memory network[J]. IEEE transactions on geoscience and remote sensing, 2034, 60: ID 5509612.
|
24 |
WU G Q, NING X, HOU L Y, et al. Three-dimensional softmax mechanism guided bidirectional GRU networks for hyperspectral remote sensing image classification[J]. Signal processing, 2023, 212: ID 109151.
|
25 |
HU W S, LI H C, PAN L, et al. Spatial–spectral feature extraction via deep ConvLSTM neural networks for hyperspectral image classification[J]. IEEE transactions on geoscience and remote sensing, 2020, 58(6): 4237-4250.
|