| 1 | 陈颖, 吴焕萍, 谢能付, 等. 基于深度学习的干旱预测方法研究进展[J/OL]. 中国农业资源与区划. ( 2024-03-26) [ 2024-10-18].  | 
																													
																						|  |  CHEN Y,  WU H P,  XIE N F, et al. REsearch progress on drought prediction methods based on deep learning[J/OL]. China Agricultural Resources and Regional Planning. ( 2024-03-26) [ 2024-10-18].  | 
																													
																						| 2 |  LIU C H. Drought level prediction with deep learning[M]// Communications in computer and information science. Singapore: Springer Nature Singapore, 2021: 53- 65. | 
																													
																						| 3 |  PARK E,  JO H W,  LEE W K, et al. Development of earth observational diagnostic drought prediction model for regional error calibration: A case study on agricultural drought in Kyrgyzstan[J]. GIScience & remote sensing, 2022, 59( 1): 36- 53. | 
																													
																						| 4 |  SARDAR V S,  M Y K,  CHAUDHARI S S, et al. Convolution neural network-based agriculture drought prediction using satellite images[C]// 2021 IEEE Mysore Sub Section International Conference (MysuruCon). Piscataway, New Jersey, USA: IEEE, 2021: 601- 607. | 
																													
																						| 5 |  KAFY AAL,  BAKSHI A,  SAHA M, et al. Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms[J]. Science of the total environment, 2023, 867: ID 161394. | 
																													
																						| 6 |  AGHELPOUR P,  MOHAMMADI B,  MEHDIZADEH S, et al. A novel hybrid dragonfly optimization algorithm for agricultural drought prediction[J]. Stochastic environmental research and risk assessment, 2021, 35( 12): 2459- 2477. | 
																													
																						| 7 |  XU Y,  ZHANG X,  HAO Z C, et al. Characterization of agricultural drought propagation over China based on bivariate probabilistic quantification[J]. Journal of hydrology, 2021, 598: ID 126194. | 
																													
																						| 8 |  HUANG S Z,  WANG L,  WANG H, et al. Spatio-temporal characteristics of drought structure across China using an integrated drought index[J]. Agricultural water management, 2019, 218: 182- 192. | 
																													
																						| 9 |  YANG M X,  MOU Y L,  MENG Y R, et al. Modeling the effects of precipitation and temperature patterns on agricultural drought in China from 1949 to 2015[J]. Science of the total environment, 2020, 711: ID 135139. | 
																													
																						| 10 | 韩东, 王鹏新, 张悦, 等. 农业干旱卫星遥感监测与预测研究进展[J]. 智慧农业(中英文), 2021, 3( 2): 1- 14. | 
																													
																						|  |  HAN D,  WANG P X,  ZHANG Y, et al. Progress of agricultural drought monitoring and forecasting using satellite remote sensing[J]. Smart agriculture, 2021, 3( 2): 1- 14. | 
																													
																						| 11 | 周洪奎, 武建军, 李小涵, 等. 基于同化数据的标准化土壤湿度指数监测农业干旱的适宜性研究[J]. 生态学报, 2019, 39( 6): 2191- 2202. | 
																													
																						|  |  ZHOU H K,  WU J J,  LI X H, et al. Suitability of assimilated data-based standardized soil moisture index for agricultural drought monitoring[J]. Acta ecologica sinica, 2019, 39( 6): 2191- 2202. | 
																													
																						| 12 |  ZHANG Y,  HAO Z C,  FENG S F, et al. Agricultural drought prediction in China based on drought propagation and large-scale drivers[J]. Agricultural water management, 2021, 255: ID 107028. | 
																													
																						| 13 |  MO K C,  LYON B. Global meteorological drought prediction using the North American multi-model ensemble[J]. Journal of hydrometeorology, 2015, 16( 3): 1409- 1424. | 
																													
																						| 14 | 黄睿茜, 赵俊芳, 霍治国, 等. 深度学习技术在农业干旱监测预测及风险评估中的应用[J]. 中国农业气象, 2023, 44( 10): 943- 952. | 
																													
																						|  |  HUANG R X,  ZHAO J F,  HUO Z G, et al. Application of deep learning technology in monitoring, forecasting and risk assessment of agricultural drought[J]. Chinese journal of agrometeorology, 2023, 44( 10): 943- 952. | 
																													
																						| 15 |  TIAN Y,  XU Y P,  WANG G Q. Agricultural drought prediction using climate indices based on support vector regression in Xiangjiang River basin[J]. Science of the total environment, 2018, 622: 710- 720. | 
																													
																						| 16 |  FUNG K F,  HUANG Y F,  KOO C H, et al. Improved SVR machine learning models for agricultural drought prediction at downstream of Langat River Basin, Malaysia[J]. Journal of water and climate change, 2020, 11( 4): 1383- 1398. | 
																													
																						| 17 |  KADAM C M,  BHOSLE U V,  HOLAMBE R S. Deep learning-driven regional drought assessment: An optimized perspective[J]. Earth science informatics, 2024, 17( 2): 1523- 1537. | 
																													
																						| 18 |  SCARSELLI F,  GORI M,  TSOI A C, et al. The graph neural network model[J]. IEEE transactions on neural networks, 2009, 20( 1): 61- 80. | 
																													
																						| 19 |  BHATTI U A,  TANG H,  WU G L, et al. Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence[J]. International journal of intelligent systems, 2023, 2023( 1): ID 8342104. | 
																													
																						| 20 |  LIU J P,  LEI X J,  ZHANG Y C, et al. The prediction of molecular toxicity based on BiGRU and GraphSAGE[J]. Computers in biology and medicine, 2023, 153: ID 106524. | 
																													
																						| 21 |  FAN J,  BAI J W,  LI Z Y, et al. A GNN-RNN approach for harnessing geospatial and temporal information: Application to crop yield prediction[J]. Proceedings of the AAAI conference on artificial intelligence, 2022, 36( 11): 11873- 11881. | 
																													
																						| 22 |  YANG J,  SUN J,  REN Y, et al. GACP: Graph neural networks with ARMA filters and a parallel CNN for hyperspectral image classification[J]. International journal of digital earth, 2023, 16( 1): 1770- 1800. | 
																													
																						| 23 |  YU J X,  MA T H,  JIA L, et al. Multivariate spatio-temporal modeling of drought prediction using graph neural network[J]. Journal of hydroinformatics, 2024, 26( 1): 107- 124. | 
																													
																						| 24 |  BALTI H,  ABBES ABEN,  FARAH I R. A Bi-GRU-based encoder-decoder framework for multivariate time series forecasting[J]. Soft computing, 2024, 28( 9): 6775- 6786. | 
																													
																						| 25 |  VASWANI A,  SHAZEER N,  PARMAR N, et al. Attention is all you need[EB/OL]. arXiv: 1706. 03762v 7, 2023. | 
																													
																						| 26 |  KIPF T N,  WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. arXiv: 1609. 02907v 4, 2016. | 
																													
																						| 27 |  SANKALP S,  RAO U M,  PATRA K C, et al. Modeling gated recurrent unit (GRU) neural network in forecasting surface soil wetness for drought districts of Odisha[J]. Developments in environmental science, 2023, 14: 217- 229. | 
																													
																						| 28 |  SALAS-MARTÍNEZ F,  MÁRQUEZ-GRAJALES A,  VALDÉS-RODRÍGUEZ O A, et al. Prediction of agricultural drought behavior using the long short-term memory network (LSTM) in the central area of the Gulf of Mexico[J]. Theoretical and applied climatology, 2024, 155( 8): 7887- 7907. | 
																													
																						| 29 |  AMANAMBU A C,  MOSSA J,  CHEN Y H. Hydrological drought forecasting using a deep transformer model[J]. Water, 2022, 14( 22): ID 3611. |